Skip to content

Commit

Permalink
add pyspark problem solution
Browse files Browse the repository at this point in the history
  • Loading branch information
xubo245 committed Jan 25, 2019
1 parent 22cc966 commit 189ece5
Show file tree
Hide file tree
Showing 2 changed files with 143 additions and 0 deletions.
Original file line number Diff line number Diff line change
@@ -0,0 +1,25 @@

## Problem:

Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).
19/01/25 11:52:11 WARN DAGScheduler: Broadcasting large task binary with size 6.0 KiB
19/01/25 11:52:12 ERROR Executor: Exception in task 0.0 in stage 0.0 (TID 0)
org.apache.spark.api.python.PythonException: Traceback (most recent call last):
File "/Users/xubo/Desktop/xubo/git/spark/python/lib/pyspark.zip/pyspark/worker.py", line 315, in main
("%d.%d" % sys.version_info[:2], version))
Exception: Python in worker has different version 2.7 than that in driver 3.6, PySpark cannot run with different minor versions.Please check environment variables PYSPARK_PYTHON and PYSPARK_DRIVER_PYTHON are correctly set.
at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.handlePythonException(PythonRunner.scala:453)
at org.apache.spark.api.python.PythonRunner$$anon$3.read(PythonRunner.scala:588)
at org.apache.spark.api.python.PythonRunner$$anon$3.read(PythonRunner.scala:571)
at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.hasNext(PythonRunner.scala:406)
at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37)
at scala.collection.Iterator.foreach(Iterator.scala:941)
at scala.collection.Iterator.foreach$(Iterator.scala:941)
at org.apache.spark.InterruptibleIterator.foreach(InterruptibleIterator.scala:28)
at scala.collection.generic.Growable.$plus$plus$eq(Growable.scala:62)
at scala.collection.generic.Growable.$plus$plus$eq$(Growable.scala:53)
## Solution
把python的版本都设置为2.7即可运行
118 changes: 118 additions & 0 deletions docs/Spark/pyspark/test image 路径错误问题.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,118 @@
## Problem
Error
Traceback (most recent call last):
File "/usr/local/Cellar/python@2/2.7.15/Frameworks/Python.framework/Versions/2.7/lib/python2.7/unittest/case.py", line 329, in run
testMethod()
File "/Users/xubo/Desktop/xubo/git/spark/python/pyspark/ml/tests/test_image.py", line 32, in test_read_images
self.assertEqual(df.count(), 4)
File "/Users/xubo/Desktop/xubo/git/spark/python/pyspark/sql/dataframe.py", line 505, in count
return int(self._jdf.count())
File "/Users/xubo/Desktop/xubo/git/spark/python/lib/py4j-0.10.8.1-src.zip/py4j/java_gateway.py", line 1286, in __call__
answer, self.gateway_client, self.target_id, self.name)
File "/Users/xubo/Desktop/xubo/git/spark/python/pyspark/sql/utils.py", line 63, in deco
return f(*a, **kw)
File "/Users/xubo/Desktop/xubo/git/spark/python/lib/py4j-0.10.8.1-src.zip/py4j/protocol.py", line 328, in get_return_value
format(target_id, ".", name), value)
Py4JJavaError: An error occurred while calling o25.count.
: org.apache.spark.sql.catalyst.errors.package$TreeNodeException: execute, tree:
Exchange SinglePartition
+- *(1) HashAggregate(keys=[], functions=[partial_count(1)], output=[count#8L])
+- *(1) Project
+- *(1) Scan ExistingRDD[image#1]

at org.apache.spark.sql.catalyst.errors.package$.attachTree(package.scala:56)
at org.apache.spark.sql.execution.exchange.ShuffleExchangeExec.doExecute(ShuffleExchangeExec.scala:129)
at org.apache.spark.sql.execution.SparkPlan.$anonfun$execute$1(SparkPlan.scala:131)
at org.apache.spark.sql.execution.SparkPlan.$anonfun$executeQuery$1(SparkPlan.scala:155)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:152)
at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:127)
at org.apache.spark.sql.execution.InputAdapter.inputRDD(WholeStageCodegenExec.scala:488)
at org.apache.spark.sql.execution.InputRDDCodegen.inputRDDs(WholeStageCodegenExec.scala:429)
at org.apache.spark.sql.execution.InputRDDCodegen.inputRDDs$(WholeStageCodegenExec.scala:428)
at org.apache.spark.sql.execution.InputAdapter.inputRDDs(WholeStageCodegenExec.scala:472)
at org.apache.spark.sql.execution.aggregate.HashAggregateExec.inputRDDs(HashAggregateExec.scala:154)
at org.apache.spark.sql.execution.WholeStageCodegenExec.doExecute(WholeStageCodegenExec.scala:719)
at org.apache.spark.sql.execution.SparkPlan.$anonfun$execute$1(SparkPlan.scala:131)
at org.apache.spark.sql.execution.SparkPlan.$anonfun$executeQuery$1(SparkPlan.scala:155)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:152)
at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:127)
at org.apache.spark.sql.execution.SparkPlan.getByteArrayRdd(SparkPlan.scala:247)
at org.apache.spark.sql.execution.SparkPlan.executeCollect(SparkPlan.scala:296)
at org.apache.spark.sql.Dataset.$anonfun$count$1(Dataset.scala:2756)
at org.apache.spark.sql.Dataset.$anonfun$count$1$adapted(Dataset.scala:2755)
at org.apache.spark.sql.Dataset.$anonfun$withAction$1(Dataset.scala:3291)
at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$1(SQLExecution.scala:87)
at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:147)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:74)
at org.apache.spark.sql.Dataset.withAction(Dataset.scala:3287)
at org.apache.spark.sql.Dataset.count(Dataset.scala:2755)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:238)
at java.lang.Thread.run(Thread.java:748)
Caused by: org.apache.hadoop.mapreduce.lib.input.InvalidInputException: Input path does not exist: file:/Users/xubo/Desktop/xubo/git/spark/python/pyspark/ml/tests/data/mllib/images/origin/kittens
at org.apache.hadoop.mapreduce.lib.input.FileInputFormat.singleThreadedListStatus(FileInputFormat.java:323)
at org.apache.hadoop.mapreduce.lib.input.FileInputFormat.listStatus(FileInputFormat.java:265)
at org.apache.spark.input.StreamFileInputFormat.setMinPartitions(PortableDataStream.scala:51)
at org.apache.spark.rdd.BinaryFileRDD.getPartitions(BinaryFileRDD.scala:51)
at org.apache.spark.rdd.RDD.$anonfun$partitions$2(RDD.scala:256)
at scala.Option.getOrElse(Option.scala:138)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:254)
at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:49)
at org.apache.spark.rdd.RDD.$anonfun$partitions$2(RDD.scala:256)
at scala.Option.getOrElse(Option.scala:138)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:254)
at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:49)
at org.apache.spark.rdd.RDD.$anonfun$partitions$2(RDD.scala:256)
at scala.Option.getOrElse(Option.scala:138)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:254)
at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:49)
at org.apache.spark.rdd.RDD.$anonfun$partitions$2(RDD.scala:256)
at scala.Option.getOrElse(Option.scala:138)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:254)
at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:49)
at org.apache.spark.rdd.RDD.$anonfun$partitions$2(RDD.scala:256)
at scala.Option.getOrElse(Option.scala:138)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:254)
at org.apache.spark.ShuffleDependency.<init>(Dependency.scala:96)
at org.apache.spark.sql.execution.exchange.ShuffleExchangeExec$.prepareShuffleDependency(ShuffleExchangeExec.scala:344)
at org.apache.spark.sql.execution.exchange.ShuffleExchangeExec.prepareShuffleDependency(ShuffleExchangeExec.scala:102)
at org.apache.spark.sql.execution.exchange.ShuffleExchangeExec.$anonfun$doExecute$1(ShuffleExchangeExec.scala:138)
at org.apache.spark.sql.catalyst.errors.package$.attachTree(package.scala:52)
... 38 more
## Solution:
相对路径不对,需要把

data_path = 'data/mllib/images/origin/kittens'
改成:

data_path = '../../../../data/mllib/images/origin/kittens'
## Result

19/01/25 12:08:06 WARN Utils: Your hostname, localhost resolves to a loopback address: 127.0.0.1; using 192.168.43.77 instead (on interface en0)
19/01/25 12:08:06 WARN Utils: Set SPARK_LOCAL_IP if you need to bind to another address
19/01/25 12:08:07 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).
19/01/25 12:08:08 WARN Utils: Service 'SparkUI' could not bind on port 4040. Attempting port 4041.
19/01/25 12:08:08 WARN Utils: Service 'SparkUI' could not bind on port 4041. Attempting port 4042.


Ran 1 test in 9.845s

OK
19/01/25 12:08:13 WARN DAGScheduler: Broadcasting large task binary with size 24.9 KiB
19/01/25 12:08:14 WARN DAGScheduler: Broadcasting large task binary with size 10.0 KiB
19/01/25 12:08:14 WARN DAGScheduler: Broadcasting large task binary with size 23.0 KiB

0 comments on commit 189ece5

Please sign in to comment.