-
Put all the original data in the ['dataset'] directory
-
Run all the codes in
- ['a. Train data preprocessing.ipynb']
- ['b. Test data preprocessing.ipynb']
Run all the codes in
- ['c. Xgboost_cv_wind.ipynb']
- ['d. Lightgbm_cv_wind.ipynb']
- ['e. Lightgbm_all_wind.ipynb']
- ['f. lightgbm_all_rainfall.ipynb']
- ['g. Lightgbm_all_time_rainfall.ipynb']
- ['h. Rainfall_mean.ipynb']
- Use ['i. PointsFinder.py'] and ['j. Point_finder_Django'] to get the guide points.
(if you want to use ['j. Point_finder_Django'], you should put ['CityData.csv'] in the ['j. Point_finder_Django/data'] directory and put the rain matrix and wind matrix, which are generated in the Regression part, in ['j. Point_finder_Django/data/day[6,7,8,9,10]'], name them ['rain_matrix.pickle'] and ['wind_matrix.pickle'])
- Run ['k. Path Searching.ipynb'] and ['l. Submit.ipynb'] to get the final results
See documentation for more details.
A Chineses version of documentation is here.