*This repository is the author's re-implementation of the iterative recognition system with machine and humans in the loop described in:
"Iterative Human and Automated Identification of Wildlife Images" Zhongqi Miao*, Ziwei Liu*, Kaitlyn M. Gaynor, Meredith S. Palmer, Stella X. Yu, Wayne M, Getz in Nature - Machine Intelligence, 2021*
Further information please contact Zhongqi Miao and Ziwei Liu.
- PyTorch (version >= 0.4.1)
- scikit-learn
All raw camera trap images that were used in this study (except classes with humans), along with the associated annotation information, are uploaded to the publicly-available Labeled Information Library of Alexandria: Biology and Conservation (LILA BC), and can be downloaded [here].
Once the data is downloaded, please change the data root in the configuration files. For
example: dataset_root: /Mozambique
.
python main.py --config ./configs/Stage_1/plain_resnet_MOZ_S1_101920.yaml
python main.py --config ./configs/Stage_1/energy_resnet_MOZ_S1_101920.yaml --energy_ft
python main.py --config ./configs/Stage_2/pslabel_oltr_resnet_MOZ_S2_111120.yaml
python main.py --config ./configs/Stage_2/pslabel_oltr_energy_resnet_MOZ_S2_111620.yaml
python main.py --config ./configs/Stage_2/pslabel_oltr_energy_resnet_MOZ_S2_111620.yaml --deploy
A demo of this code can be found in [here] in CodeOcean.
The use of this software is released under BSD-3.
@article{10.1038/s42256-021-00393-0,
year = {2021},
title = {{Iterative human and automated identification of wildlife images}},
author = {Miao, Zhongqi and Liu, Ziwei and Gaynor, Kaitlyn M and Palmer, Meredith S and Yu, Stella X and Getz, Wayne M},
journal = {Nature Machine Intelligence},
doi = {10.1038/s42256-021-00393-0},
pages = {885--895},
number = {10},
volume = {3}
}