Tensorflow
- U-Net
- MulmoU-Net
pip3 install git+https://github.com/yoshihikoueno/DNNCancerAnnotator.git@master
python3 -m annotator -h
# usage: python3 -m annotator [-h] {train,evaluate,extract_all,generate_tfrecords} ...
#
# DNNAnnotator: CLI interface
#
# positional arguments:
# {train,evaluate,extract_all,generate_tfrecords}
# command
# train Train a model with specified configs.
# evaluate Evaluate a model with specified configs
# extract_all extract indivisual images (TRA, ADC, etc...) from the screenshots
# generate_tfrecords Generate TFRecords
#
# optional arguments:
# -h, --help show this help message and exit
Command:
python3 -m annotator train
Options:
python3 -m annotator train -h
# usage: python3 -m annotator train [-h] --config CONFIG [CONFIG ...] --save_path SAVE_PATH --data_path DATA_PATH [DATA_PATH ...]
# --max_steps MAX_STEPS [--early_stop_steps EARLY_STOP_STEPS] [--save_freq SAVE_FREQ] [--validate]
# [--val_data_path VAL_DATA_PATH [VAL_DATA_PATH ...]] [--visualize] [--profile]
#
# Train a model with specified configs.
#
# This function will first dump the input arguments,
# then train a model, finally dump reults.
#
# optional arguments:
# -h, --help show this help message and exit
# --config CONFIG [CONFIG ...]
# configuration file path
# This option accepts arbitrary number of configs.
# If a list is specified, the first one is considered
# as a "main" config, and the other ones will overwrite the content
# --save_path SAVE_PATH
# where to save weights/configs/results
# --data_path DATA_PATH [DATA_PATH ...]
# path to the data root dir
# --max_steps MAX_STEPS
# max training steps
# --early_stop_steps EARLY_STOP_STEPS
# steps to train without improvements
# None(default) disables this feature
# --save_freq SAVE_FREQ
# interval of checkpoints
# default: 500 steps
# --validate also validate the model on the validation dataset
# --val_data_path VAL_DATA_PATH [VAL_DATA_PATH ...]
# path to the validation dataset
# --visualize should visualize results
# --profile enable profilling
Command:
python3 -m annotator evaluate
Options:
python3 -m annotator evaluate -h
# usage: python3 -m annotator evaluate [-h] --save_path SAVE_PATH --data_path DATA_PATH [DATA_PATH ...] --tag TAG [--config CONFIG]
# [--avoid_overwrite] [--export_path EXPORT_PATH] [--export_images] [--export_csv]
# [--min_interval MIN_INTERVAL]
#
# Evaluate a model with specified configs
#
# for every checkpoints available.
#
# optional arguments:
# -h, --help show this help message and exit
# --save_path SAVE_PATH
# where to find weights/configs/results
# --data_path DATA_PATH [DATA_PATH ...]
# path to the data root dir
# --tag TAG save tag
# --config CONFIG configuration file path
# None (default): load config from save_path
# --avoid_overwrite should `save_path` altered when a directory already
# exists at the original `save_path` to avoid overwriting.
# --export_path EXPORT_PATH
# path to export results
# --export_images export images
# --export_csv export results csv
# --min_interval MIN_INTERVAL
# minimum interval in steps between evaluations.
# Checkpoints which are less than `min_interval` steps away
# from the previous one will be disregarded.