Skip to content

The pytorch implementation of CVPR 2022 paper: "WarpingGAN: Warping Multiple Uniform Priors for Adversarial 3D Point Cloud Generation".

License

Notifications You must be signed in to change notification settings

yoPitarch/WarpingGAN

 
 

Repository files navigation

WarpingGAN

The pytorch implementation of CVPR 2022 paper: "WarpingGAN: Warping Multiple Uniform Priors for Adversarial 3D Point Cloud Generation". postercvpr

Introduce Video https://youtu.be/3x0UckQHCDg

The generated chair and airplane samples (for visualization or evaluation), pretrained models, and inference file are available here: https://drive.google.com/file/d/1YwxoyiWLJC4gxVgZ-ntijo9NQEC0MRlW/view.

Usage

  1. requires:

    CUDA10 + Pytorch 1.4 + Python3 + Visdom
    
  2. Dataset:

    download data: https://github.com/charlesq34/pointnet-autoencoder#download-data
    shapenetcore_partanno_segmentation_benchmark_v0
    
  3. Setting

    In our project, arguments.py file has almost every parameters to specify for training. (We implement the project based on TreeGAN's code.)
    
    For example, if you want to train, it needs to specify dataset_path argument.
    
  4. Train:

    python -m visdom.server
    python train.py
    

About

The pytorch implementation of CVPR 2022 paper: "WarpingGAN: Warping Multiple Uniform Priors for Adversarial 3D Point Cloud Generation".

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%