Skip to content

Commit

Permalink
[SPARK-22060][ML] Fix CrossValidator/TrainValidationSplit param persi…
Browse files Browse the repository at this point in the history
…st/load bug

## What changes were proposed in this pull request?

Currently the param of CrossValidator/TrainValidationSplit persist/loading is hardcoding, which is different with other ML estimators. This cause persist bug for new added `parallelism` param.

I refactor related code, avoid hardcoding persist/load param. And in the same time, it solve the `parallelism` persisting bug.

This refactoring is very useful because we will add more new params in apache#19208 , hardcoding param persisting/loading making the thing adding new params very troublesome.

## How was this patch tested?

Test added.

Author: WeichenXu <[email protected]>

Closes apache#19278 from WeichenXu123/fix-tuning-param-bug.
  • Loading branch information
WeichenXu123 authored and jkbradley committed Sep 23, 2017
1 parent 3e6a714 commit f180b65
Show file tree
Hide file tree
Showing 6 changed files with 46 additions and 38 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -212,14 +212,13 @@ object CrossValidator extends MLReadable[CrossValidator] {

val (metadata, estimator, evaluator, estimatorParamMaps) =
ValidatorParams.loadImpl(path, sc, className)
val numFolds = (metadata.params \ "numFolds").extract[Int]
val seed = (metadata.params \ "seed").extract[Long]
new CrossValidator(metadata.uid)
val cv = new CrossValidator(metadata.uid)
.setEstimator(estimator)
.setEvaluator(evaluator)
.setEstimatorParamMaps(estimatorParamMaps)
.setNumFolds(numFolds)
.setSeed(seed)
DefaultParamsReader.getAndSetParams(cv, metadata,
skipParams = Option(List("estimatorParamMaps")))
cv
}
}
}
Expand Down Expand Up @@ -302,17 +301,17 @@ object CrossValidatorModel extends MLReadable[CrossValidatorModel] {

val (metadata, estimator, evaluator, estimatorParamMaps) =
ValidatorParams.loadImpl(path, sc, className)
val numFolds = (metadata.params \ "numFolds").extract[Int]
val seed = (metadata.params \ "seed").extract[Long]
val bestModelPath = new Path(path, "bestModel").toString
val bestModel = DefaultParamsReader.loadParamsInstance[Model[_]](bestModelPath, sc)
val avgMetrics = (metadata.metadata \ "avgMetrics").extract[Seq[Double]].toArray

val model = new CrossValidatorModel(metadata.uid, bestModel, avgMetrics)
model.set(model.estimator, estimator)
.set(model.evaluator, evaluator)
.set(model.estimatorParamMaps, estimatorParamMaps)
.set(model.numFolds, numFolds)
.set(model.seed, seed)
DefaultParamsReader.getAndSetParams(model, metadata,
skipParams = Option(List("estimatorParamMaps")))
model
}
}
}
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,7 @@

package org.apache.spark.ml.tuning

import java.io.IOException
import java.util.{List => JList}

import scala.collection.JavaConverters._
Expand Down Expand Up @@ -207,14 +208,13 @@ object TrainValidationSplit extends MLReadable[TrainValidationSplit] {

val (metadata, estimator, evaluator, estimatorParamMaps) =
ValidatorParams.loadImpl(path, sc, className)
val trainRatio = (metadata.params \ "trainRatio").extract[Double]
val seed = (metadata.params \ "seed").extract[Long]
new TrainValidationSplit(metadata.uid)
val tvs = new TrainValidationSplit(metadata.uid)
.setEstimator(estimator)
.setEvaluator(evaluator)
.setEstimatorParamMaps(estimatorParamMaps)
.setTrainRatio(trainRatio)
.setSeed(seed)
DefaultParamsReader.getAndSetParams(tvs, metadata,
skipParams = Option(List("estimatorParamMaps")))
tvs
}
}
}
Expand Down Expand Up @@ -295,17 +295,17 @@ object TrainValidationSplitModel extends MLReadable[TrainValidationSplitModel] {

val (metadata, estimator, evaluator, estimatorParamMaps) =
ValidatorParams.loadImpl(path, sc, className)
val trainRatio = (metadata.params \ "trainRatio").extract[Double]
val seed = (metadata.params \ "seed").extract[Long]
val bestModelPath = new Path(path, "bestModel").toString
val bestModel = DefaultParamsReader.loadParamsInstance[Model[_]](bestModelPath, sc)
val validationMetrics = (metadata.metadata \ "validationMetrics").extract[Seq[Double]].toArray

val model = new TrainValidationSplitModel(metadata.uid, bestModel, validationMetrics)
model.set(model.estimator, estimator)
.set(model.evaluator, evaluator)
.set(model.estimatorParamMaps, estimatorParamMaps)
.set(model.trainRatio, trainRatio)
.set(model.seed, seed)
DefaultParamsReader.getAndSetParams(model, metadata,
skipParams = Option(List("estimatorParamMaps")))
model
}
}
}
Original file line number Diff line number Diff line change
Expand Up @@ -150,20 +150,14 @@ private[ml] object ValidatorParams {
}.toSeq
))

val validatorSpecificParams = instance match {
case cv: CrossValidatorParams =>
List("numFolds" -> parse(cv.numFolds.jsonEncode(cv.getNumFolds)))
case tvs: TrainValidationSplitParams =>
List("trainRatio" -> parse(tvs.trainRatio.jsonEncode(tvs.getTrainRatio)))
case _ =>
// This should not happen.
throw new NotImplementedError("ValidatorParams.saveImpl does not handle type: " +
instance.getClass.getCanonicalName)
}

val jsonParams = validatorSpecificParams ++ List(
"estimatorParamMaps" -> parse(estimatorParamMapsJson),
"seed" -> parse(instance.seed.jsonEncode(instance.getSeed)))
val params = instance.extractParamMap().toSeq
val skipParams = List("estimator", "evaluator", "estimatorParamMaps")
val jsonParams = render(params
.filter { case ParamPair(p, v) => !skipParams.contains(p.name)}
.map { case ParamPair(p, v) =>
p.name -> parse(p.jsonEncode(v))
}.toList ++ List("estimatorParamMaps" -> parse(estimatorParamMapsJson))
)

DefaultParamsWriter.saveMetadata(instance, path, sc, extraMetadata, Some(jsonParams))

Expand Down
20 changes: 15 additions & 5 deletions mllib/src/main/scala/org/apache/spark/ml/util/ReadWrite.scala
Original file line number Diff line number Diff line change
Expand Up @@ -396,17 +396,27 @@ private[ml] object DefaultParamsReader {

/**
* Extract Params from metadata, and set them in the instance.
* This works if all Params implement [[org.apache.spark.ml.param.Param.jsonDecode()]].
* This works if all Params (except params included by `skipParams` list) implement
* [[org.apache.spark.ml.param.Param.jsonDecode()]].
*
* @param skipParams The params included in `skipParams` won't be set. This is useful if some
* params don't implement [[org.apache.spark.ml.param.Param.jsonDecode()]]
* and need special handling.
* TODO: Move to [[Metadata]] method
*/
def getAndSetParams(instance: Params, metadata: Metadata): Unit = {
def getAndSetParams(
instance: Params,
metadata: Metadata,
skipParams: Option[List[String]] = None): Unit = {
implicit val format = DefaultFormats
metadata.params match {
case JObject(pairs) =>
pairs.foreach { case (paramName, jsonValue) =>
val param = instance.getParam(paramName)
val value = param.jsonDecode(compact(render(jsonValue)))
instance.set(param, value)
if (skipParams == None || !skipParams.get.contains(paramName)) {
val param = instance.getParam(paramName)
val value = param.jsonDecode(compact(render(jsonValue)))
instance.set(param, value)
}
}
case _ =>
throw new IllegalArgumentException(
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -159,12 +159,15 @@ class CrossValidatorSuite
.setEvaluator(evaluator)
.setNumFolds(20)
.setEstimatorParamMaps(paramMaps)
.setSeed(42L)
.setParallelism(2)

val cv2 = testDefaultReadWrite(cv, testParams = false)

assert(cv.uid === cv2.uid)
assert(cv.getNumFolds === cv2.getNumFolds)
assert(cv.getSeed === cv2.getSeed)
assert(cv.getParallelism === cv2.getParallelism)

assert(cv2.getEvaluator.isInstanceOf[BinaryClassificationEvaluator])
val evaluator2 = cv2.getEvaluator.asInstanceOf[BinaryClassificationEvaluator]
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,7 @@ import org.apache.spark.ml.classification.{LogisticRegression, LogisticRegressio
import org.apache.spark.ml.classification.LogisticRegressionSuite.generateLogisticInput
import org.apache.spark.ml.evaluation.{BinaryClassificationEvaluator, Evaluator, RegressionEvaluator}
import org.apache.spark.ml.linalg.Vectors
import org.apache.spark.ml.param.{ParamMap}
import org.apache.spark.ml.param.ParamMap
import org.apache.spark.ml.param.shared.HasInputCol
import org.apache.spark.ml.regression.LinearRegression
import org.apache.spark.ml.util.{DefaultReadWriteTest, MLTestingUtils}
Expand Down Expand Up @@ -160,11 +160,13 @@ class TrainValidationSplitSuite
.setTrainRatio(0.5)
.setEstimatorParamMaps(paramMaps)
.setSeed(42L)
.setParallelism(2)

val tvs2 = testDefaultReadWrite(tvs, testParams = false)

assert(tvs.getTrainRatio === tvs2.getTrainRatio)
assert(tvs.getSeed === tvs2.getSeed)
assert(tvs.getParallelism === tvs2.getParallelism)

ValidatorParamsSuiteHelpers
.compareParamMaps(tvs.getEstimatorParamMaps, tvs2.getEstimatorParamMaps)
Expand Down

0 comments on commit f180b65

Please sign in to comment.