Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

AVX-512でクラッシュする問題を修正 #287

Merged
merged 2 commits into from
Oct 7, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion source/eval/nnue/nnue_accumulator.h
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,8 @@ namespace NNUE {

// 入力特徴量をアフィン変換した結果を保持するクラス
// 最終的な出力である評価値も一緒に持たせておく
struct alignas(32) Accumulator {
// AVX-512命令を使用する場合に64bytesのアライメントが要求される。
struct alignas(64) Accumulator {
std::int16_t
accumulation[2][kRefreshTriggers.size()][kTransformedFeatureDimensions];
Value score = VALUE_ZERO;
Expand Down
14 changes: 14 additions & 0 deletions source/eval/nnue/nnue_feature_transformer.h
Original file line number Diff line number Diff line change
Expand Up @@ -190,6 +190,12 @@ class FeatureTransformer {
_mm512_load_si512(&reinterpret_cast<const __m512i*>(accumulation[perspectives[p]][0])[j * 2 + 0]);
__m512i sum1 =
_mm512_load_si512(&reinterpret_cast<const __m512i*>(accumulation[perspectives[p]][0])[j * 2 + 1]);
for (IndexType i = 1; i < kRefreshTriggers.size(); ++i) {
sum0 = _mm512_add_epi16(
sum0, reinterpret_cast<const __m512i*>(accumulation[perspectives[p]][i])[j * 2 + 0]);
sum1 = _mm512_add_epi16(
sum1, reinterpret_cast<const __m512i*>(accumulation[perspectives[p]][i])[j * 2 + 1]);
}
_mm512_store_si512(&out[j], _mm512_permutexvar_epi64(
kControl, _mm512_max_epi8(_mm512_packs_epi16(sum0, sum1), kZero)));
}
Expand Down Expand Up @@ -289,7 +295,11 @@ class FeatureTransformer {
const IndexType offset = kHalfDimensions * index;
auto accumulation = reinterpret_cast<vec_t*>(&accumulator.accumulation[perspective][i][0]);
auto column = reinterpret_cast<const vec_t*>(&weights_[offset]);
#if defined(USE_AVX512)
constexpr IndexType kNumChunks = kHalfDimensions / kSimdWidth;
#else
constexpr IndexType kNumChunks = kHalfDimensions / (kSimdWidth / 2);
#endif
for (IndexType j = 0; j < kNumChunks; ++j) {
accumulation[j] = vec_add_16(accumulation[j], column[j]);
}
Expand Down Expand Up @@ -327,7 +337,11 @@ class FeatureTransformer {
RawFeatures::AppendChangedIndices(pos, kRefreshTriggers[i], removed_indices, added_indices, reset);
for (Color perspective : {BLACK, WHITE}) {
#if defined(VECTOR)
#if defined(USE_AVX512)
constexpr IndexType kNumChunks = kHalfDimensions / kSimdWidth;
#else
constexpr IndexType kNumChunks = kHalfDimensions / (kSimdWidth / 2);
#endif
auto accumulation = reinterpret_cast<vec_t*>(&accumulator.accumulation[perspective][i][0]);
#endif
if (reset[perspective]) {
Expand Down
Loading