Official implementation, datasets and trained models of "SegNeuron: 3D Neuron Instance Segmentation in Any EM Volume with a Generalist Model"
The datasets required for model development and validation are available here. The trained models can be download here.
Dataset | Modality | Res.( |
Total voxels (M) | Labeled voxels (M) | Dataset | Modality | Res.( |
Total voxels (M) | Labeled voxels (M) |
---|---|---|---|---|---|---|---|---|---|
1. ZFinch | SBF-SEM | 9, 9, 20 | 3635 | 131 | 9. HBrain | FIB-SEM | 8, 8, 8 | 3072 | 844 |
2. ZFish | SBF-SEM | 9, 9, 20 | 1674 | - | 10. FIB25 | FIB-SEM | 8, 8, 8 | 312 | 312 |
3. vEM1 | ATUM-SEM | 8, 8, 50 | 1205 | 157 | 11. Minnie | ssTEM | 8, 8, 40 | 2096 | - |
4. vEM2 | ATUM-SEM | 8, 8, 30 | 1329 | 281 | 12. Pinky | ssTEM | 8, 8, 40 | 1165 | 117 |
5. vEM3 | ATUM-SEM | 8, 8, 40 | 1301 | 253 | 13. FAFB | ssTEM | 8, 8, 40 | 2625 | 577 |
6. MitoEM | ATUM-SEM | 8, 8, 30 | 1048 | - | 14. Basil | ssTEM | 8, 8, 40 | 23 | 23 |
7. H01 | ATUM-SEM | 8, 8, 30 | 1166 | 118 | 15. Harris | others | 6, 6, 50 | 30 | 30 |
8. Kasthuri | ATUM-SEM | 6, 6, 30 | 1526 | 478 | 16. vEM4 | others | 8, 8, 20 | 45 | 45 |
cd Pretrain
python pretrain.py
cd Train_and_Inference
python supervised_train.py
cd Train_and_Inference
python inference.py
cd Postprocess
python FRMC_post.py
This code is based on SSNS-Net (IEEE TMI'22) by Huang Wei et al. The postprocessing tools are based on constantinpape/elf. Should you have any further questions, please let us know. Thanks again for your interest.