Skip to content

xuwenyihust/PawMark

Repository files navigation

PawMark: Platform For Big Data & AI

Logo

GitHub Release Docker Pulls GitHub Repo stars Apache Spark 3.5.0 GitHub License Integration Test Test Web App

Summary

PawMark is a platform for big data and AI. It is based on Apache Spark and Kubernetes. The platform is designed to be scalable and easy to use. It provides a set of tools for data processing, machine learning, and data visualization.

Architecture

Setup

Docker Compose

Details
  • Start docker-compose

    docker-compose up -d
  • Access platform UI

  • Use notebook

    • Access http://localhost:8888
    • Spark session is automatically created
      • Run spark in cell to check the spark session
    • Run the following code in the notebook to test the spark session
      spark.range(0, 5) \
        .write.format("delta").mode("overwrite").saveAsTable("test")
  • Check the history server

  • Delta tables

    • Use /opt/data/delta-table/ as the root directory for delta tables
  • Schedule with Airflow

    • Access http://localhost:8090
    • Use the default username and password to login
    • Create a new DAG to schedule the spark job
    • Or use the example DAGs in the ./dags folder

MiniKube

  • TODO

Examples

Basic Analysis on Static Tables

Incremental Pipeline

  • TODO

Docker Images

WebApp

Build Docker - WebApp

Server

Build Docker - Server

Spark

Build Docker - Spark

Notebook

Build Docker - Notebook

  • Dockerfile
  • Includes
    • Jupyter Notebook
    • Spark
    • Google Cloud SDK
    • GCS Connector
    • Pyspark Startup Script
    • Notebook Save Hook Function
History Server

Build Docker - History Server

Airflow

Build Docker - Airflow

Versions

Details
Component Version
Scala 2.12
Java 17
Python 3.11
IPython 8.16.1
Apache Spark 3.5.0
Delta Lake 3.0.0
Airflow 2.9.1
Postgres 13
React 18.3.1

License

This project is licensed under the terms of the Apache-2.0 license.

Reference