Skip to content

Commit

Permalink
Update the acto interface
Browse files Browse the repository at this point in the history
Signed-off-by: Tyler Gu <[email protected]>
  • Loading branch information
tylergu committed Feb 15, 2024
1 parent cd5a879 commit b2da495
Show file tree
Hide file tree
Showing 4 changed files with 817 additions and 171 deletions.
227 changes: 110 additions & 117 deletions acto/__main__.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,100 +4,101 @@
import logging
import os
import random
import signal
import sys
import threading
import time
from datetime import datetime

from acto.engine import Acto, apply_testcase
from acto.input.input import DeterministicInputModel
from acto.lib.operator_config import OperatorConfig
from acto.post_process.post_diff_test import PostDiffTest
from acto.utils.error_handler import handle_excepthook, thread_excepthook
from acto.utils.thread_logger import get_thread_logger

random.seed(0)

start_time = time.time()
workdir_path = 'testrun-%s' % datetime.now().strftime('%Y-%m-%d-%H-%M')
workdir_path = f"testrun-{datetime.now().strftime('%Y-%m-%d-%H-%M')}"

parser = argparse.ArgumentParser(
description='Automatic, Continuous Testing for k8s/openshift Operators')
parser.add_argument('--workdir',
dest='workdir_path',
type=str,
default=workdir_path,
help='Working directory')
parser.add_argument('--config', '-c', dest='config', help='Operator port config path')
description="Automatic, Continuous Testing for k8s/openshift Operators"
)
parser.add_argument(
'--cluster-runtime',
'-r',
dest='cluster_runtime',
"--workdir",
dest="workdir_path",
type=str,
default=workdir_path,
help="Working directory",
)
parser.add_argument(
"--config",
"-c",
dest="config",
help="Operator porting config path",
required=True,
)
parser.add_argument(
"--cluster-runtime",
"-r",
dest="cluster_runtime",
default="KIND",
help='Cluster runtime for kubernetes, can be KIND (Default), K3D or MINIKUBE')
parser.add_argument('--duration',
'-d',
dest='duration',
required=False,
help='Number of hours to run')
parser.add_argument('--preload-images',
dest='preload_images',
nargs='*',
help='Docker images to preload into Kind cluster')
# Temporary solution before integrating controller-gen
parser.add_argument('--helper-crd',
dest='helper_crd',
help='generated CRD file that helps with the input generation')
parser.add_argument('--context', dest='context', help='Cached context data')
parser.add_argument('--num-workers',
dest='num_workers',
type=int,
default=1,
help='Number of concurrent workers to run Acto with')
parser.add_argument('--num-cases',
dest='num_cases',
type=int,
default=1,
help='Number of testcases to bundle each time')
parser.add_argument('--learn', dest='learn', action='store_true', help='Learn mode')

parser.add_argument('--additional-semantic',
dest='additional_semantic',
action='store_true',
help='Run additional semantic testcases')
parser.add_argument('--delta-from', dest='delta_from', help='Delta from')
parser.add_argument('--notify-crash',
dest='notify_crash',
action='store_true',
help='Submit a google form response to notify')
parser.add_argument('--learn-analysis',
dest='learn_analysis_only',
action='store_true',
help='Only learn analysis')
parser.add_argument('--dryrun',
dest='dryrun',
action='store_true',
help='Only generate test cases without executing them')
parser.add_argument('--checkonly', action='store_true')
help="Cluster runtime for kubernetes, can be KIND (Default), K3D or MINIKUBE",
)
parser.add_argument("--context", dest="context", help="Cached context data")
parser.add_argument(
"--num-workers",
dest="num_workers",
type=int,
default=1,
help="Number of concurrent workers to run Acto with",
)
parser.add_argument(
"--num-cases",
dest="num_cases",
type=int,
default=1,
help="Number of testcases to bundle each time",
)
parser.add_argument(
"--learn", dest="learn", action="store_true", help="Learn mode"
)
parser.add_argument("--delta-from", dest="delta_from", help="Delta from")
parser.add_argument(
"--notify-crash",
dest="notify_crash",
action="store_true",
help="Submit a google form response to notify",
)
parser.add_argument(
"--learn-analysis",
dest="learn_analysis_only",
action="store_true",
help="Only learn analysis",
)
parser.add_argument(
"--dryrun",
dest="dryrun",
action="store_true",
help="Only generate test cases without executing them",
)
parser.add_argument("--checkonly", action="store_true")

args = parser.parse_args()

os.makedirs(args.workdir_path, exist_ok=True)
# Setting up log infra
logging.basicConfig(
filename=os.path.join(args.workdir_path, 'test.log'),
filename=os.path.join(args.workdir_path, "test.log"),
level=logging.DEBUG,
filemode='w',
format='%(asctime)s %(levelname)-7s, %(name)s, %(filename)-9s:%(lineno)d, %(message)s')
filemode="w",
format="%(asctime)s %(levelname)-7s, %(name)s, %(filename)-9s:%(lineno)d, %(message)s",
)
logging.getLogger("kubernetes").setLevel(logging.ERROR)
logging.getLogger("sh").setLevel(logging.ERROR)

with open(args.config, 'r') as config_file:
with open(args.config, "r", encoding="utf-8") as config_file:
config = json.load(config_file)
if 'monkey_patch' in config:
importlib.import_module(config['monkey_patch'])

from acto import common
from acto.engine import Acto, apply_testcase
from acto.input.input import DeterministicInputModel, InputModel
from acto.lib.operator_config import OperatorConfig
from acto.post_process.post_diff_test import PostDiffTest
from acto.utils.error_handler import handle_excepthook, thread_excepthook
from acto.utils.thread_logger import get_thread_logger
if "monkey_patch" in config:
importlib.import_module(config["monkey_patch"])

logger = get_thread_logger(with_prefix=False)

Expand All @@ -106,69 +107,61 @@
threading.excepthook = thread_excepthook

if args.notify_crash:
logger.critical('Crash notification should be enabled in config.yaml')
logger.critical("Crash notification should be enabled in config.yaml")

with open(args.config, 'r') as config_file:
with open(args.config, "r", encoding="utf-8") as config_file:
config = json.load(config_file)
if 'monkey_patch' in config:
del config['monkey_patch']
config = OperatorConfig(**config)
logger.info('Acto started with [%s]' % sys.argv)
logger.info('Operator config: %s', config)
if "monkey_patch" in config:
del config["monkey_patch"]
config = OperatorConfig.model_validate(config)
logger.info("Acto started with [%s]", sys.argv)
logger.info("Operator config: %s", config)

# Preload frequently used images to amid ImagePullBackOff
if args.preload_images:
logger.info('%s will be preloaded into Kind cluster', args.preload_images)

# register timeout to automatically stop after # hours
if args.duration != None:
signal.signal(signal.SIGALRM, common.timeout_handler)
signal.alarm(int(args.duration) * 60 * 60)
logger.info("%s will be preloaded into Kind cluster", args.preload_images)

if args.context == None:
context_cache = os.path.join(os.path.dirname(config.seed_custom_resource), 'context.json')
if args.context is None:
context_cache = os.path.join(
os.path.dirname(config.seed_custom_resource), "context.json"
)
else:
context_cache = args.context

# Initialize input model and the apply testcase function
# input_model = InputModel(context_cache['crd']['body'], config.example_dir,
# args.num_workers, args.num_cases, None)
input_model = DeterministicInputModel
apply_testcase_f = apply_testcase
is_reproduce = False

start_time = datetime.now()
acto = Acto(workdir_path=args.workdir_path,
operator_config=config,
cluster_runtime=args.cluster_runtime,
preload_images_=args.preload_images,
context_file=context_cache,
helper_crd=args.helper_crd,
num_workers=args.num_workers,
num_cases=args.num_cases,
dryrun=args.dryrun,
analysis_only=args.learn_analysis_only,
is_reproduce=is_reproduce,
input_model=input_model,
apply_testcase_f=apply_testcase_f,
delta_from=args.delta_from,
focus_fields=config.focus_fields,)
acto = Acto(
workdir_path=args.workdir_path,
operator_config=config,
cluster_runtime=args.cluster_runtime,
preload_images_=args.preload_images,
context_file=context_cache,
helper_crd=args.helper_crd,
num_workers=args.num_workers,
num_cases=args.num_cases,
dryrun=args.dryrun,
analysis_only=args.learn_analysis_only,
is_reproduce=False,
input_model=DeterministicInputModel,
apply_testcase_f=apply_testcase_f,
delta_from=args.delta_from,
focus_fields=config.focus_fields,
)
generation_time = datetime.now()
logger.info('Acto initialization finished in %s', generation_time - start_time)
if args.additional_semantic:
acto.run(modes=[InputModel.ADDITIONAL_SEMANTIC])
elif not args.learn:
acto.run(modes=['normal'])
logger.info("Acto initialization finished in %s", generation_time - start_time)
if not args.learn:
acto.run(modes=["normal"])
normal_finish_time = datetime.now()
logger.info('Acto normal run finished in %s', normal_finish_time - start_time)
logger.info('Start post processing steps')
logger.info("Acto normal run finished in %s", normal_finish_time - start_time)
logger.info("Start post processing steps")

# Post processing
post_diff_test_dir = os.path.join(args.workdir_path, 'post_diff_test')
post_diff_test_dir = os.path.join(args.workdir_path, "post_diff_test")
p = PostDiffTest(testrun_dir=args.workdir_path, config=config)
if not args.checkonly:
p.post_process(post_diff_test_dir, num_workers=args.num_workers)
p.check(post_diff_test_dir, num_workers=args.num_workers)

end_time = datetime.now()
logger.info('Acto end to end finished in %s', end_time - start_time)
logger.info("Acto end to end finished in %s", end_time - start_time)
Loading

0 comments on commit b2da495

Please sign in to comment.