Skip to content

Cross-modality Multiscale Feature Fusion Network for 6D Pose Estimation

Notifications You must be signed in to change notification settings

xiao-wang-han/CMFF6D

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 

Repository files navigation

CMFF6D

Cross-modality Multiscale Feature Fusion Network for 6D Pose Estimation

Installation - From conda

  • Install conda environment from conda environment.yml (it might take a while, and don't forget changing the prefix in the end of environment.yml file)
conda env create -f cmff6d/environment.yml
  • Activate our cmff6dtest conda environment
conda activate cmff6dtest
  • Install mmseg within conda
pip install -r cmff6d/mmseg_install.txt
  • Following normalSpeed to install normalSpeed within conda
pip3 install "pybind11[global]"
git clone https://github.com/hfutcgncas/normalSpeed.git
cd normalSpeed
python3 setup.py install --user
  • Install some neccessary package
cd models/RandLA
sh compile_op.sh

Code Structure

Datasets

  • Download real and prepare synthetic LineMod Dataset

    • Download the preprocessed LineMOD dataset from onedrive link or google drive link (refer from DenseFusion). Unzip it and link the unzipped Linemod_preprocessed/ to ffb6d/datasets/linemod/Linemod_preprocessed:
    ln -s path_to_unzipped_Linemod_preprocessed ffb6d/dataset/linemod/
  • Download MP6D Dataset

链接:https://pan.baidu.com/s/1FX9OdbaVrUT1d6W6dkcmUA 提取码:by9r

Training and evaluating

Training on the LineMOD Dataset

  • Train the model for the target object. bash sh train_lm.sh

Evaluating on the LineMOD Dataset

  • Start evaluation by: bash sh test_lm.sh `

Evaluating on the Occ-LineMOD Dataset

  • Start evaluation by: bash sh test_occlm.sh

Training on the MP6D Dataset

  • Train the model for the target object.

    bash sh train_meta.sh

Evaluating on the MP6D Dataset

  • Start evaluation by: bash sh test_meta.sh

About

Cross-modality Multiscale Feature Fusion Network for 6D Pose Estimation

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published