Cross-modality Multiscale Feature Fusion Network for 6D Pose Estimation
- Install conda environment from conda environment.yml (it might take a while, and don't forget changing the prefix in the end of environment.yml file)
conda env create -f cmff6d/environment.yml
- Activate our cmff6dtest conda environment
conda activate cmff6dtest
- Install mmseg within conda
pip install -r cmff6d/mmseg_install.txt
- Following normalSpeed to install normalSpeed within conda
pip3 install "pybind11[global]"
git clone https://github.com/hfutcgncas/normalSpeed.git
cd normalSpeed
python3 setup.py install --user
- Install some neccessary package
cd models/RandLA
sh compile_op.sh
-
- Download the preprocessed LineMOD dataset from onedrive link or google drive link (refer from DenseFusion). Unzip it and link the unzipped
Linemod_preprocessed/
toffb6d/datasets/linemod/Linemod_preprocessed
:
ln -s path_to_unzipped_Linemod_preprocessed ffb6d/dataset/linemod/
- Download the preprocessed LineMOD dataset from onedrive link or google drive link (refer from DenseFusion). Unzip it and link the unzipped
链接:https://pan.baidu.com/s/1FX9OdbaVrUT1d6W6dkcmUA 提取码:by9r
- Train the model for the target object.
bash sh train_lm.sh
- Start evaluation by:
bash sh test_lm.sh
`
- Start evaluation by:
bash sh test_occlm.sh
-
Train the model for the target object.
bash sh train_meta.sh
- Start evaluation by:
bash sh test_meta.sh