-
Notifications
You must be signed in to change notification settings - Fork 318
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
training log for KGAT-3 on Amazon-Book dataset
training log for KGAT-3 (with three attentive embedding propagation layers) on Amazon-Book dataset
- Loading branch information
1 parent
432bb1c
commit 6eb71fc
Showing
1 changed file
with
74 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,74 @@ | ||
KGAT: dataset=amazon-book, lr=0.0001, regs=[1e-5,1e-5], node_dropout=[0.1], mess_dropout=[0.1] | ||
[n_users, n_items]=[70679, 24915] | ||
[n_train, n_test]=[652514, 193920] | ||
[n_entities, n_relations, n_triples]=[113487, 39, 2557746] | ||
[batch_size, batch_size_kg]=[1024, 4015] | ||
convert ratings into adj mat done. | ||
convert 80 relational triples into adj mat done. @1.5871s | ||
generate si-normalized adjacency matrix. | ||
reordering indices... | ||
reorganize all kg data done. | ||
sort meta-data done. | ||
sort all data done. | ||
load the pretrained bprmf model parameters. | ||
using pretrained initialization | ||
#params: 12146384 | ||
without pretraining. | ||
Epoch 0 [322.8s]: train==[434.85162=14.30064 + 420.17328 + 0.37876] | ||
Epoch 9 [305.4s + 92.5s]: train==[24.35039=9.99989 + 13.37466 + 0.97583], recall=[0.13895, 0.30366], precision=[0.01453, 0.00699], hit=[0.23908, 0.47029], ndcg=[0.09586, 0.14911] | ||
save the weights in path: weights/amazon-book/kgat_si_sum_bi_l3/64-32-16/l0.0001_r1e-05-1e-05 | ||
Epoch 19 [309.6s + 89.4s]: train==[15.04446=8.35125 + 5.66788 + 1.02533], recall=[0.14370, 0.31000], precision=[0.01499, 0.00714], hit=[0.24673, 0.47744], ndcg=[0.09814, 0.15197] | ||
save the weights in path: weights/amazon-book/kgat_si_sum_bi_l3/64-32-16/l0.0001_r1e-05-1e-05 | ||
Epoch 29 [310.7s + 87.0s]: train==[11.97192=7.29322 + 3.65631 + 1.02240], recall=[0.14630, 0.31336], precision=[0.01530, 0.00722], hit=[0.25085, 0.48122], ndcg=[0.09966, 0.15357] | ||
save the weights in path: weights/amazon-book/kgat_si_sum_bi_l3/64-32-16/l0.0001_r1e-05-1e-05 | ||
Epoch 39 [306.7s + 89.0s]: train==[10.38838=6.59963 + 2.78626 + 1.00252], recall=[0.14556, 0.31349], precision=[0.01518, 0.00722], hit=[0.24982, 0.48155], ndcg=[0.09870, 0.15293] | ||
Epoch 49 [309.1s + 86.4s]: train==[9.32441=6.05954 + 2.28278 + 0.98207], recall=[0.14746, 0.31572], precision=[0.01540, 0.00727], hit=[0.25318, 0.48411], ndcg=[0.09995, 0.15420] | ||
save the weights in path: weights/amazon-book/kgat_si_sum_bi_l3/64-32-16/l0.0001_r1e-05-1e-05 | ||
Epoch 50 [312.0s]: train==[9.35165=6.07337 + 2.29877 + 0.97950] | ||
Epoch 59 [309.7s + 86.4s]: train==[8.60173=5.62771 + 2.00795 + 0.96606], recall=[0.14782, 0.31582], precision=[0.01536, 0.00727], hit=[0.25326, 0.48356], ndcg=[0.09977, 0.15396] | ||
save the weights in path: weights/amazon-book/kgat_si_sum_bi_l3/64-32-16/l0.0001_r1e-05-1e-05 | ||
Epoch 69 [306.5s + 87.2s]: train==[8.16859=5.43472 + 1.77658 + 0.95728], recall=[0.14803, 0.31633], precision=[0.01542, 0.00730], hit=[0.25373, 0.48448], ndcg=[0.09985, 0.15425] | ||
save the weights in path: weights/amazon-book/kgat_si_sum_bi_l3/64-32-16/l0.0001_r1e-05-1e-05 | ||
Epoch 79 [308.0s + 86.0s]: train==[7.90719=5.33418 + 1.62499 + 0.94802], recall=[0.14862, 0.31721], precision=[0.01546, 0.00732], hit=[0.25488, 0.48523], ndcg=[0.10030, 0.15472] | ||
save the weights in path: weights/amazon-book/kgat_si_sum_bi_l3/64-32-16/l0.0001_r1e-05-1e-05 | ||
Epoch 89 [311.5s + 89.2s]: train==[7.56361=5.08096 + 1.54154 + 0.94111], recall=[0.14857, 0.31712], precision=[0.01549, 0.00730], hit=[0.25479, 0.48508], ndcg=[0.10020, 0.15459] | ||
Epoch 99 [310.0s + 87.7s]: train==[7.14868=4.81877 + 1.39478 + 0.93513], recall=[0.14910, 0.31646], precision=[0.01555, 0.00730], hit=[0.25585, 0.48440], ndcg=[0.10082, 0.15487] | ||
save the weights in path: weights/amazon-book/kgat_si_sum_bi_l3/64-32-16/l0.0001_r1e-05-1e-05 | ||
Epoch 100 [308.7s]: train==[7.15196=4.79659 + 1.42010 + 0.93527] | ||
Epoch 109 [309.8s + 88.0s]: train==[6.82737=4.58080 + 1.31501 + 0.93157], recall=[0.14872, 0.31623], precision=[0.01550, 0.00730], hit=[0.25485, 0.48530], ndcg=[0.10058, 0.15485] | ||
Epoch 119 [309.0s + 90.9s]: train==[6.78630=4.59566 + 1.26268 + 0.92795], recall=[0.14839, 0.31658], precision=[0.01545, 0.00729], hit=[0.25475, 0.48617], ndcg=[0.10041, 0.15493] | ||
Epoch 129 [309.6s + 89.7s]: train==[6.50196=4.37541 + 1.20284 + 0.92370], recall=[0.14923, 0.31688], precision=[0.01553, 0.00731], hit=[0.25588, 0.48635], ndcg=[0.10111, 0.15542] | ||
save the weights in path: weights/amazon-book/kgat_si_sum_bi_l3/64-32-16/l0.0001_r1e-05-1e-05 | ||
Epoch 139 [309.5s + 92.8s]: train==[6.45537=4.36299 + 1.17223 + 0.92015], recall=[0.14877, 0.31591], precision=[0.01546, 0.00727], hit=[0.25530, 0.48536], ndcg=[0.10116, 0.15533] | ||
Epoch 149 [308.7s + 90.3s]: train==[6.26348=4.20540 + 1.14015 + 0.91793], recall=[0.14901, 0.31662], precision=[0.01551, 0.00729], hit=[0.25617, 0.48556], ndcg=[0.10080, 0.15503] | ||
Epoch 150 [309.0s]: train==[6.26841=4.21381 + 1.13699 + 0.91760] | ||
Epoch 159 [311.0s + 99.3s]: train==[6.12620=4.12069 + 1.09121 + 0.91431], recall=[0.14848, 0.31708], precision=[0.01544, 0.00729], hit=[0.25478, 0.48655], ndcg=[0.10065, 0.15526] | ||
Epoch 169 [309.4s + 90.6s]: train==[5.97006=4.00595 + 1.05198 + 0.91212], recall=[0.14887, 0.31572], precision=[0.01548, 0.00726], hit=[0.25550, 0.48525], ndcg=[0.10130, 0.15539] | ||
Epoch 179 [308.4s + 91.6s]: train==[5.93250=3.96599 + 1.05499 + 0.91152], recall=[0.14887, 0.31517], precision=[0.01547, 0.00724], hit=[0.25567, 0.48486], ndcg=[0.10120, 0.15518] | ||
Epoch 189 [306.8s + 91.1s]: train==[5.82507=3.94174 + 0.97392 + 0.90941], recall=[0.14905, 0.31589], precision=[0.01549, 0.00725], hit=[0.25608, 0.48550], ndcg=[0.10104, 0.15508] | ||
Epoch 199 [386.6s + 148.3s]: train==[5.73585=3.80720 + 1.01967 + 0.90899], recall=[0.14897, 0.31547], precision=[0.01546, 0.00724], hit=[0.25546, 0.48552], ndcg=[0.10087, 0.15504] | ||
Epoch 200 [388.7s]: train==[5.68087=3.76723 + 1.00487 + 0.90876] | ||
Epoch 209 [418.2s + 161.0s]: train==[5.62682=3.73299 + 0.98617 + 0.90765], recall=[0.14996, 0.31526], precision=[0.01555, 0.00725], hit=[0.25706, 0.48523], ndcg=[0.10110, 0.15493] | ||
save the weights in path: weights/amazon-book/kgat_si_sum_bi_l3/64-32-16/l0.0001_r1e-05-1e-05 | ||
Epoch 219 [393.2s + 141.8s]: train==[5.53078=3.65310 + 0.97136 + 0.90632], recall=[0.14888, 0.31495], precision=[0.01544, 0.00723], hit=[0.25547, 0.48499], ndcg=[0.10082, 0.15486] | ||
Epoch 229 [389.6s + 140.7s]: train==[5.42612=3.60250 + 0.91661 + 0.90701], recall=[0.14937, 0.31509], precision=[0.01548, 0.00723], hit=[0.25629, 0.48421], ndcg=[0.10126, 0.15502] | ||
Epoch 239 [397.8s + 159.2s]: train==[5.36261=3.55542 + 0.90213 + 0.90506], recall=[0.14985, 0.31511], precision=[0.01550, 0.00722], hit=[0.25600, 0.48465], ndcg=[0.10148, 0.15524] | ||
Epoch 249 [382.6s + 145.9s]: train==[5.33600=3.56271 + 0.86919 + 0.90408], recall=[0.15004, 0.31577], precision=[0.01554, 0.00723], hit=[0.25694, 0.48537], ndcg=[0.10172, 0.15547] | ||
save the weights in path: weights/amazon-book/kgat_si_sum_bi_l3/64-32-16/l0.0001_r1e-05-1e-05 | ||
Epoch 250 [391.4s]: train==[5.26561=3.44393 + 0.91696 + 0.90472] | ||
Epoch 259 [392.7s + 154.0s]: train==[5.18826=3.41418 + 0.86969 + 0.90439], recall=[0.15026, 0.31535], precision=[0.01555, 0.00723], hit=[0.25676, 0.48529], ndcg=[0.10160, 0.15540] | ||
save the weights in path: weights/amazon-book/kgat_si_sum_bi_l3/64-32-16/l0.0001_r1e-05-1e-05 | ||
Epoch 269 [387.3s + 99.7s]: train==[5.11109=3.35818 + 0.85011 + 0.90280], recall=[0.15015, 0.31567], precision=[0.01556, 0.00723], hit=[0.25692, 0.48577], ndcg=[0.10188, 0.15570] | ||
Epoch 279 [305.3s + 96.3s]: train==[5.05070=3.32123 + 0.82708 + 0.90239], recall=[0.15025, 0.31623], precision=[0.01557, 0.00724], hit=[0.25726, 0.48573], ndcg=[0.10178, 0.15563] | ||
Epoch 289 [345.1s + 101.0s]: train==[5.00337=3.29391 + 0.80647 + 0.90300], recall=[0.15020, 0.31557], precision=[0.01551, 0.00723], hit=[0.25685, 0.48519], ndcg=[0.10187, 0.15569] | ||
Epoch 299 [354.8s + 99.3s]: train==[4.92237=3.19177 + 0.82832 + 0.90228], recall=[0.15022, 0.31556], precision=[0.01555, 0.00723], hit=[0.25680, 0.48527], ndcg=[0.10194, 0.15570] | ||
Epoch 300 [309.9s]: train==[5.02486=3.28674 + 0.83598 + 0.90214] | ||
Epoch 309 [348.3s + 106.4s]: train==[4.90299=3.17177 + 0.82934 + 0.90188], recall=[0.14934, 0.31612], precision=[0.01545, 0.00724], hit=[0.25561, 0.48603], ndcg=[0.10151, 0.15567] | ||
Epoch 319 [306.7s + 106.0s]: train==[4.86037=3.11336 + 0.84706 + 0.89995], recall=[0.14997, 0.31540], precision=[0.01552, 0.00722], hit=[0.25635, 0.48518], ndcg=[0.10152, 0.15530] | ||
Epoch 329 [307.2s + 104.0s]: train==[4.88717=3.18126 + 0.80609 + 0.89982], recall=[0.15018, 0.31640], precision=[0.01555, 0.00724], hit=[0.25703, 0.48655], ndcg=[0.10192, 0.15584] | ||
Epoch 339 [308.0s + 100.6s]: train==[4.82424=3.12098 + 0.80548 + 0.89777], recall=[0.14951, 0.31562], precision=[0.01546, 0.00722], hit=[0.25619, 0.48587], ndcg=[0.10140, 0.15538] | ||
Epoch 349 [307.5s + 100.2s]: train==[4.67877=3.02359 + 0.76005 + 0.89513], recall=[0.14967, 0.31549], precision=[0.01548, 0.00722], hit=[0.25652, 0.48535], ndcg=[0.10140, 0.15520] | ||
Epoch 350 [356.4s]: train==[4.68890=3.02420 + 0.76996 + 0.89474] | ||
Epoch 359 [306.4s + 100.7s]: train==[4.65316=2.98167 + 0.77672 + 0.89477], recall=[0.14964, 0.31555], precision=[0.01550, 0.00722], hit=[0.25680, 0.48502], ndcg=[0.10166, 0.15548] | ||
Early stopping is trigger at step: 10 log:0.14963518842334994 | ||
Best Iter=[25]@[123463.0] recall=[0.15026 0.21178 0.25415 0.28778 0.31535], precision=[0.01555 0.01144 0.00939 0.00813 0.00723], hit=[0.25676 0.35057 0.40804 0.45136 0.48529], ndcg=[0.10160 0.12346 0.13700 0.14725 0.15540] |
6eb71fc
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
self.u_e = tf.nn.embedding_lookup(self.ua_embeddings, self.users)
AttributeError: 'KGAT' object has no attribute 'ua_embeddings'
请问这个问题怎么解决啊
6eb71fc
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
请问你设置程序运行的代码是什么呢?
6eb71fc
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
运行的代码是Main.py。这个变量已经在函数里面定义的,不知道为什么会报错。这段代码如下:
def _build_model_phase_I(self):
if self.alg_type in ['bi']:
self.ua_embeddings, self.ea_embeddings = self._create_bi_interaction_embed()
elif self.alg_type in ['gcn']:
self.ua_embeddings, self.ea_embeddings = self._create_gcn_embed()
elif self.alg_type in ['graphsage']:
self.ua_embeddings, self.ea_embeddings = self._create_graphsage_embed()
self.u_e = tf.nn.embedding_lookup(self.ua_embeddings, self.users)
self.pos_i_e = tf.nn.embedding_lookup(self.ea_embeddings, self.pos_items)
self.neg_i_e = tf.nn.embedding_lookup(self.ea_embeddings, self.neg_items)
6eb71fc
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I think that there is no configuration about the running model. Please run the command that I list in READ.me like:
python Main.py --model_type kgat --alg_type bi --dataset yelp2018 --regs [1e-5,1e-5] --layer_size [64,32,16] --embed_size 64 --lr 0.0001 --epoch 1000 --verbose 50 --save_flag 1 --pretrain -1 --batch_size 1024 --node_dropout [0.1] --mess_dropout [0.1,0.1,0.1] --use_att True --use_kge True
6eb71fc
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
It's ok,thank you!