The paper is located at https://arxiv.org/abs/1802.04821. A demonstration video can be found at https://youtu.be/-Z-ieH6w0LA.
Houthooft, R., Chen, R. Y., Isola, P., Stadie, B. C., Wolski, F., Ho, J., Abbeel, P. (2018). Evolved Policy Gradients. arXiv preprint arXiv:1802.04821.
Install Anaconda:
curl -o /tmp/miniconda.sh https://repo.continuum.io/miniconda/Miniconda3-latest-MacOSX-x86_64.sh
bash /tmp/miniconda.sh
conda create -n epg python=3.6.1
source activate epg
Install necessary OSX packages for MPI:
brew install open-mpi
Install necessary Python packages:
pip install mpi4py==3.0.0 scipy \
pandas tqdm joblib cloudpickle == 0.5.2 \
progressbar2 opencv-python flask >= 0.11.1 matplotlib pytest cython \
chainer pathos mujoco_py 'gym[all]'
First go to the EPG code folder:
cd <path_to_EPG_folder>
Then launch the entry script:
PYTHONPATH=. python epg/launch_local.py
Experiment data is saved in <home_dir>/EPG_experiments/<month>-<day>/<experiment_name>
.
First, set theta_load_path = '<path_to_theta.npy>/theta.npy'
in launch_local.py
according to the theta.npy
obtained after running the launch_local.py
script. This file should be located in /<home_dir>/EPG_experiments/<month>-<day>/<experiment_name>/thetas/
.
Then run:
PYTHONPATH=. python epg/launch_local.py --test true
Assuming the experiment data is saved in <home_dir>/EPG_experiments/<month>-<day>/<experiment_name>
, run:
PYTHONPATH=. python epg/viskit/frontend.py <home_dir>/EPG_experiments/<month>-<day>/<experiment_name>
Then go to http://0.0.0.0:5000
in your browser.
Viskit sourced from
Duan, Y., Chen, X., Houthooft, R., Schulman, J., Abbeel, P. "Benchmarking Deep Reinforcement Learning for Continuous Control". Proceedings of the 33rd International Conference on Machine Learning (ICML), 2016.
@article{Houthooft18Evolved,
author = {Houthooft, Rein and Chen, Richard Y. and Isola, Phillip and Stadie, Bradly C. and Wolski, Filip and Ho, Jonathan and Abbeel, Pieter},
title = {Evolved Policy Gradients},
journal={arXiv preprint arXiv:1802.04821},
year = {2018}}