Skip to content

Gone are the days of black-box dataframes in otherwise type-safe code! Pandantic builds off the Pydantic API to enable validation and filtering of the usual dataframe types (i.e., pandas, etc.)

License

Notifications You must be signed in to change notification settings

wesselhuising/pandantic

Repository files navigation

pandantic

pandantic introduces the ability to validate (pandas) DataFrames using the pydantic.BaseModel. The package is still in development and wants to focus on more dataframe types in the future (like polars and spark) besides pandas. Currently, only the pandas type is supported together with a pandas plugin.

First, install pandantic by using pip (or any other package managing tool).

pip install pandantic

Docs

Documentation can be found here

from pydantic import BaseModel
from pydantic.types import StrictInt

from pandantic import Pandantic


# Define your schema using Pydantic BaseModel
class DataFrameSchema(BaseModel):
    """Example schema for testing."""
    example_str: str
    example_int: StrictInt

# Create a validator instance
validator = Pandantic(schema=DataFrameSchema)

# Example DataFrame with some invalid data
df_invalid = pd.DataFrame(
    data={
        "example_str": ["foo", "bar", 1],  # Last value is invalid (int instead of str)
        "example_int": ["1", 2, 3.0],      # First and last values are invalid (str and float)
    }
)

# Validate with error raising
try:
    validator.validate(dataframe=df_invalid, errors="raise")
except ValueError:
    print("Validation failed!")

# Or filter out invalid rows
df_valid = validator.validate(dataframe=df_invalid, errors="skip")
# Only the second row remains as it's the only valid one

The validator supports two modes:

  • errors="raise": Raises a ValueError if any row fails validation
  • errors="skip": Returns a new DataFrame with only the valid rows

Pandas plugin

Another way to use pandantic is via our pandas.DataFrame extension plugin. This adds the following methods to pandas (once "registered" by import pandantic.plugins.pandas):

  • DataFrame.pandantic.validate(schema:PandanticBaseModel), which returns a boolean for all valid inputs.
  • DataFrame.pandantic.filter(schema:PandanticBaseModel), which wraps PandanticBaseModel.parse_obj(errors="filter") and returns as dataframe.

Example:

import pandas as pd
from pydantic import BaseModel

import pandantic.plugins.pandas


df1: pd.DataFrame = pd.DataFrame({"a": [1, 2, 3], "b": ["a", "b", "c"]})
class MyModel(BaseModel):
    a: int
    b: str

df1.pandantic.validate(MyModel)  # returns True
df1.pandantic.filter(MyModel)  # returns the same dataframe

# but if we have a mixed DataFrame
df2: pd.DataFrame = pd.DataFrame({"a": [1, 2, "3"], "b": ["a", 3, "c"]})

df2.pandantic.validate(MyModel)  # returns False
df2.pandantic.filter(MyModel)  # returns the filtered DataFrame with only the first row

Advanced Features

Strict Type Validation

The validator supports Pydantic's strict types for more rigorous validation:

from pydantic import BaseModel
from pydantic.types import StrictInt
from pandantic import Pandantic

class StrictSchema(BaseModel):
    example_str: str
    example_int: StrictInt  # Will only accept actual integers

validator = Pandantic(schema=StrictSchema)
df = pd.DataFrame({
    "example_str": ["foo", "bar"],
    "example_int": [1, "2"]  # Second value will fail as it's a string
})

# This will only keep the first row
df_valid = validator.validate(dataframe=df, errors="skip")

Custom Validators

You can still use all of Pydantic's validation features in your schema:

from pydantic import BaseModel, field_validator
from pandantic import Pandantic

class CustomSchema(BaseModel):
    example_str: str
    example_int: int

    @field_validator("example_int")
    def must_be_even(cls, v: int) -> int:
        if v % 2 != 0:
            raise ValueError("Number must be even")
        return v

validator = Pandantic(schema=CustomSchema)

Optional Fields

As the DataFrame is being parsed into a dict, a None value is considered as a nan value in cases there are different values in the dict. Therefore, specifying Optional columns (where the value can be empty) can be speciyfied by using the custom pandantic.Optional type. This type is a replacement for typing.Optional.

from pydantic import BaseModel
from pandantic import Optional  # pylint: disable=import-outside-toplevel

# GIVEN
class Model(BaseModel):
    a: Optional[int] = None
    b: int

df_example = pd.DataFrame({"a": [1, None, 2], "b": ["str", 2, 3]})

validator = Pandantic(schema=Model)

About

Gone are the days of black-box dataframes in otherwise type-safe code! Pandantic builds off the Pydantic API to enable validation and filtering of the usual dataframe types (i.e., pandas, etc.)

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published