Here is a metagenomic sequence data analysis pipeline, nothing different with other pipelines. But if you want to get to know the metagenomic analysis pipeline step by step, maybe you can get some details from this repository. And it is suitable for the beginners i think.
- Raw sequence quality trim
- Host reference sequence remove
- Metaphlan for composition of microbial communities
- Sequence assembly
- Gene prediction
- Remove redundancy gene and build non-redundant geneset
- Function annotation using emapper
- Organize function results table
$python pipe_metagenome.py -h
usage:
=================================================================
python pipe_metagenome.py
--fastq_list fq.list
--output_dir result
--ref ref_bowtie2_index
ref_bowtie2_index:
canis: /root/database/Canis_GCF_000002285.5/Canis_GCF_000002285_5
human: /root/database/hg38_GCF_000001405.40/GCF_000001405.40/hg38
=================================================================
Pipeline of metagenome
optional arguments:
-h, --help show this help message and exit
-l FQLIST, --fastq_list FQLIST
raw fq list
-o OUTDIR, --output_dir OUTDIR
result output
-r REF, --ref REF ref genome bowtie2 index
What you need to do is to provide two input files:
- --fastq_list # sample - fq_R1 - fq_R2 list, format like
fq.list
- --ref # host reference genome bowtie2 index
And set output dir --output_dir
, all of output results would be included.
βββ 00-result # most important results in this fold
βΒ Β βββ 00_merged_abundance_table.txt # composition of microbial communities
βΒ Β βββ 01_metaphlan_phylum.txt # communities in phylum level
βΒ Β βββ 02_metaphlan_class.txt # communities in class level
βΒ Β βββ 03_metaphlan_order.txt # communities in order level
βΒ Β βββ 04_metaphlan_family.txt # communities in family level
βΒ Β βββ 05_metaphlan_genus.txt # communities in genus level
βΒ Β βββ 06_metaphlan_species.txt # communities in species level
βΒ Β βββ KO_samples.xls # KEGG KO gene composition table
βΒ Β βββ pathway_samples.xls # KEGG pathway composition table
βββ 01-fastp_trim
βββ 02-ref_remove
βββ 03-metaphlan
βββ 04-megahit
βββ 05-prodigal
βββ 06-cdhit
βββ 07-emapper
βββ 08-sam_count
βββ 09-emapper_kegg
- column 1 : communities information
- column 2 ~ : communities abundance percent of samples
clade_name C1
k__Bacteria;p__Firmicutes 86.51132
k__Bacteria;p__Actinobacteria 6.52203
k__Bacteria;p__Bacteroidetes 4.24729
k__Bacteria;p__Proteobacteria 1.96422
k__Bacteria;p__Fusobacteria 0.75514
k__Bacteria;p__Tenericutes 0.0
k__Bacteria;p__Spirochaetes 0.0
k__Bacteria;p__Verrucomicrobia 0.0
...
- column 1 : KO gene name
- column 2 : KO gene description
- column 3 : KO gene id
- column 4 ~ : KO gene number of samples
KO_name KO_des KO C1
"E1.1.1.1, adh" alcohol dehydrogenase [EC:1.1.1.1] K00001 2817.0
"AKR1A1, adh" alcohol dehydrogenase (NADP+) [EC:1.1.1.2] K00002 254.0
hom homoserine dehydrogenase [EC:1.1.1.3] K00003 2890.0
"BDH, butB" "(R,R)-butanediol dehydrogenase / meso-butanediol dehydrogenase / diacetyl reductase [EC:1.1.1.4 1.1.1.- 1.1.1.303]" K00004 20.0
...
- column 1 : pathway level 1
- column 2 : pathway level 2
- column 3 : pathway level 3
- column 4 : pathway id
- column 5 ~ : pathway gene number of samples
level1 level2 level3 pathway C1
Metabolism Carbohydrate metabolism Glycolysis / Gluconeogenesis ko00010 91005.0
Metabolism Carbohydrate metabolism Citrate cycle (TCA cycle) ko00020 31442.0
Metabolism Carbohydrate metabolism Pentose phosphate pathway ko00030 53905.0
Metabolism Carbohydrate metabolism Pentose and glucuronate interconversions ko00040 21334.0
...
fastp -i sample_1.fastq.gz \
-o sample_clean.1.fastq.gz \
-I sample_2.fastq.gz \
-O sample_clean.2.fastq.gz \
-w 8 -h sample.html -j sample.json
bowtie2 -x ref_bowtie2_index -1 sample_clean.1.fastq.gz -2 sample_clean.2.fastq.gz -S sample.sam 2>sample.mapping.log
samtools fastq -@ 8 -f 4 sample.sam -1 sample.unmap.1.fastq.gz -2 sample.unmap.2.fastq.gz -s sample.unmap.single.fastq.gz
zcat sample.unmap.1.fastq.gz sample.unmap.2.fastq.gz|metaphlan --input_type fastq --bowtie2out sample_bowtie2.bz2 --output_file sample_metaphlan.tsv --nproc 8
# when you install metaphlan in the system, you will get script 'merge_metaphlan_tables.py', that's for merge different samples metaphlan result in one file, like:
merge_metaphlan_tables.py *.tsv > 00_merged_abundance_table.txt
grep -E '(p__)|(clade_name)' 00_merged_abundance_table.txt |grep -v 'c__'|sed 's/|/;/g' > 01_metaphlan_phylum.txt
grep -E '(c__)|(clade_name)' 00_merged_abundance_table.txt |grep -v 'o__'|sed 's/|/;/g' > 02_metaphlan_class.txt
grep -E '(o__)|(clade_name)' 00_merged_abundance_table.txt |grep -v 'f__'|sed 's/|/;/g' > 03_metaphlan_order.txt
grep -E '(f__)|(clade_name)' 00_merged_abundance_table.txt |grep -v 'g__'|sed 's/|/;/g' > 04_metaphlan_family.txt
grep -E '(g__)|(clade_name)' 00_merged_abundance_table.txt |grep -v 's__'|sed 's/|/;/g' > 05_metaphlan_genus.txt
grep -E '(s__)|(clade_name)' 00_merged_abundance_table.txt |grep -v 't__'|sed 's/|/;/g' > 06_metaphlan_species.txt
megahit -1 sample.unmap.1.fastq.gz -2 sample.unmap.2.fastq.gz -o sample_megahit --out-prefix sample -t 8
seqkit seq -m 500 sample_megahit/sample.contigs.fa --remove-gaps > sample.contigs_500.fa
sed -i 's/>/>sample_/g' sample.contigs_500.fa
prodigal -p meta -a sample_prot.faa -m -d sample_nucl.fna -o sample_genes.gff -f gff -s sample.stat -i sample.contigs_500.fa
cat sample1_prot.faa sample2_prot.faa ... > prot.faa
cat sample1_nucl.fna sample2_nucl.fna ... > nucl.fna
cd-hit -i prot.faa -o prot_nonerude.faa -c 0.95 -T 8 -n 5 -d 0 -aS 0.9 -g 1 -sc 1 -sf 1 -M 0
grep '>' prot_nonerude.faa|awk -F ' ' '{print $1}'|sed 's/>//g' > prot_nonerude.list
seqtk subseq nucl.fna prot_nonerude.list > nucl_nonerude.fna
bwa index nucl_nonerude.fna -p geneset_bwa
bioawk -c fastx '{print $name, length($seq)}' nucl_nonerude.fna > geneset_length.txt
# when you install emapper in the system, you will get script 'emapper.py'
emapper.py -i prot_nonerude.faa -o eggnog --cpu 0 --usemem
cut -f1,12 eggnog.emapper.annotations|grep -v "^#"|sed 's/ko://g'|sed '1i gene\tko'|grep -v "-" > KEGG_KO.txt
cut -f1,13 eggnog.emapper.annotations|grep -v "^#"|sed '1i gene\tpathway'|grep -v "-" > KEGG_PATHWAY.txt
bwa mem -t 4 geneset_bwa sample.unmap.1.fastq.gz sample.unmap.2.fastq.gz | samtools view -bS - | samtools sort - > sample_mapping_geneset.bam
samtools view -F 4 -F 256 -F 2048 sample_mapping_geneset.bam|awk '{if($3!="*") print $3}'|sort| uniq -c|awk 'BEGIN {FS=" ";OFS=","} {print $2,$1}' | awk 'BEGIN {FS=",";OFS=","} {if ($2 > 1) print $1"\t"$2; else print $1"\t0"}'|sed '1i gene\tsample' > sample.count
# using /kegg/kegg.py to analysis, like:
$python kegg.py -h
usage: python kegg.py -kk KEGG_KO.txt -kp KEGG_PATHWAY.txt -mt merged_file.txt -ok out_KO.xls -op out_pathway.xls
Merge KO/pathway count table from eggnog result.
optional arguments:
-h, --help show this help message and exit
-kk KEGGKO, --kegg_KO KEGGKO
Sample's kegg KO information, such as KEGG_KO.txt
-kp KEGGPATHWAY, --kegg_pathway KEGGPATHWAY
Sample's kegg pathway information, such as
KEGG_PATHWAY.txt
-mt MERGETABLE, --merge_table MERGETABLE
Sample's merged gene count table, such as
merged_file.txt
-ok OUTKO, --out_KO OUTKO
Output KO result, such as out_KO.xls
-op OUTPATHWAY, --out_pathway OUTPATHWAY
Output pathway result, such as out_pathway.xls
-t TMP, --tmp TMP Tmp files dir
Wanjin Hu ([email protected])