Skip to content

wangkenpu/Conv-TasNet-PyTorch

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

26 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Conv-TasNet

A PyTorch implementation of Conv-TasNet described in "TasNet: Surpassing Ideal Time-Frequency Masking for Speech Separation".

Results

From Activatoin Norm Causal batch size #GPU SI-SDRi(dB) SDRi(dB)
Paper Softmax cLN Yes - - 10.8 11.2
Mine ReLU cLN Yes 6 1 Tesla V100 11.3 11.6
Mine ReLU cLN Yes 24 4 Tesla V100 11.2 11.5
Paper Softmax cLN No - - 14.0 14.4
Mine ReLU cLN No 24 4 Tesla V100 15.1 15.4
Paper Softmax gLN No - - 14.6 15.0
Mine Softmax gLN No 8 2 GTX 1080TI 5.0 5.2
Mine Sigmoid gLN No 8 2 GTX 1080TI 14.6 14.9
Mine ReLU gLN No 8 2 GTX 1080TI 15.6 15.8
Mine ReLU gLN No 20 4 Tesla V100 16.0 16.3

Seems increasing the batch_size will get better performance for non-causal convolution. SI-SDR and SI-SNR are the same thing (different name) in different papers.

Install

  • PyTorch 0.4.1+
  • Python3 (Recommend Anaconda)
  • pip install -r requirements.txt

Usage

scripts/run_tasnet.sh

About

A PyTorch implementation of Conv-TasNet

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published