Skip to content

Making a long story short: A multi-importance fast-forwarding egocentric videos with the emphasis on relevant objects @ Journal of Visual Communication and Image Representation 53 (2018)

License

Notifications You must be signed in to change notification settings

walyssonBarbosa/SemanticFastForward_JVCI_2018

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Project

This project is based on the paper Making a long story short: A multi-importance fast-forwarding egocentric videos with the emphasis on relevant objects on the Special Issue on Egocentric Vision and Lifelogging Tools at Journal of Visual Communication and Image Representation (JVCI 2018). It implements a fast-forward method for first-person videos based on multi-importance approach.

For more information and visual results, please acess the project page.

Contact

Authors

Institution

Federal University of Minas Gerais (UFMG)
Computer Science Department
Belo Horizonte - Minas Gerais -Brazil

Laboratory

VeRLab

VeRLab: Vison and Robotic Laboratory
http://www.verlab.dcc.ufmg.br

Code

Dependencies

  • MATALB 2015a

Usage

  • The following flowchart depicts the processing steps of our method:

Flowchart

  1. Optical Flow Estimator:

    The first step processing is to estimate the Optical Flow of the Input VIdeo.

    1. First you should download the Poleg et al. 2014 Flow Estimator code from the link.
    2. Navigate to the download folder and unzip the code.
    3. Into the Vid2OpticalFlowCSV\Example folder, run the command:
Vid2OpticalFlowCSV.exe -v < video_filename > -c < config.xml > -o < output_filename.csv >
Options Description Type Example
< Video_filename > Path and filename of the video. String ~/Data/MyVideos/myVideo.mp4
< config.xml > Path to the configuration XML file. String ../default-config.xml
< output_filename.csv > Path to save the output CSV file. String myVideo.csv

Save the output file using the same name of the using with extension .csv.

  1. Semantic Extractor:

    The second step is to extract the semantic information over all frames of the Input video and save it in a CSV file. On MATLAB console, go to the project folder and run the command:

>> ExtractAndSave(< Video_filename >, < Semantic_extractor_name >)
Options Description Type Example
< Video_filename > Path and filename of the video. String ~/Data/MyVideos/Video.mp4
< Semantic_extractor_name > Semantic extractor algorithm. String 'face' or 'pedestrian' or 'coolnet'
  1. Create Experiment

    To run the code, you should create an experiment entry. On a text editor, add a case to the GetVideoDetails function in the file SemanticSequenceLibrary.m:

function [videoFile, startInd, endInd, filename, fps] = GetVideoDetails(video_dir,exp_name)

 ...

 case < Experiment_name >
     filename = < video_filename >;
     startInd = < start_index_frame > ;
     endInd   = < final_index_frame >;
     fps      = < video_frames_per_second >;
					
  ... 
  
Field Description Type Example
< Experiment_name > Name to identify the experiment. String MyVideo
< video_filename > Filename to the video. String myVideo.mp4
< start_index_frame > Frame index to start the processing. Integer 1
< final_index_frame > Frame intex to stop the processing. Integer 16987
< video_frames_per_second > Frames per second of the video. Integer 30
  1. Semantic Fast-Forward

    After the previous steps, you are ready to accelerate the Input Video. On MATLAB console, go to the project folder and run the command:

>> SpeedupVideo(< Video_dir >, < Experiment_name >, < Semantic_extractor_name >, ['Speedup', < rate >] )
Options Description Type Example
< Video_dir > Path to the folder where the video file is. String ~/Data/MyVideos
< Experiment_name > Name set in the SemanticSequenceLibrary.m file. String My_Video
< Semantic_extractor_name > Semantic extractor algorithm used in the Semantic Extractor step. String 'face' or 'pedestrian' or 'coolnet'
< rate > Fast-forward rate [default value is 10]. Integer 8
  1. Configure Video Parameters

    After the Semantic Fast-Forward step, the accelerated video is create. Now we are going to stabilize the output video. The first stabilization step is to configure the video parameters in the file acceleratedVideoStabilizer/experiment.xml. Follow the instructions described into the file.

  2. Accelerate Video Stabilizer

    Navigate to the <project_folder>/acceleratedVideoStabilizer/ folder. Follow the instructions described into the <project_folder>/acceleratedVideoStabilizer/README.md file to compile and run the code.

    The output of this step is the stabilized semantic fast-forward video.

Acknowledgements

  1. EgoSampling: Y. Poleg, T. Halperin, C. Arora, S. Peleg, Egosampling: Fast-forward and stereo for egocentric videos, in: IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 4768–4776. doi:10.1109/CVPR.2015.7299109.
  2. LK_Blocked_Optical_Flow: Y. Poleg, C. Arora, S. Peleg, Temporal segmentation of egocentric videos, in: IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 2537–2544. doi:10.1109/CVPR.2014.325.
  3. NPD_Face_Detector: S. Liao, A. K. Jain, S. Z. Li, A fast and accurate unconstrained face detector, IEEE Transactions on Pattern Analysis and Machine Intelligence 38 (2) (2016) 211–223. doi:10.1109/TPAMI.2015.2448075.
  4. PMT_Pedestrian_Detector: P. Dollar, Piotr’s Computer Vision Matlab Toolbox (PMT), https://github.com/pdollar/toolbox.

Citation

If you are using it to academic purpose, please cite:

M. M. Silva, W. L. S. Ramos, F.C. Chamone, J. P. K. Ferreira, M. F. M. Campos, E. R. Nascimento, Making a long story short: A multi-importance fast-forwarding egocentric videos with the emphasis on relevant objects, in: Special Issue on Egocentric Vision and Lifelogging Tools at Journal of Visual Communication and Image Representation. doi:10.1016/j.jvcir.2018.02.013.

Bibtex entry

@article{Silva2018, title = {Making a long story short: A Multi-Importance fast-forwarding egocentric videos with the emphasis on relevant objects},
author = {Michel M. Silva and Washington L. S. Ramos and Felipe C. Chamone and João P. K. Ferreira and Mario F. M. Campos and Erickson R. Nascimento},
journal = {Journal of Visual Communication and Image Representation},
volume = {53},
number = {},
pages = {55 – 64},
year = {2018},
issn = {1047-3203},
doi = {10.1016/j.jvcir.2018.02.013}
}

Enjoy it.

About

Making a long story short: A multi-importance fast-forwarding egocentric videos with the emphasis on relevant objects @ Journal of Visual Communication and Image Representation 53 (2018)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • HTML 43.4%
  • MATLAB 33.9%
  • TeX 9.0%
  • C++ 8.6%
  • JavaScript 2.9%
  • C 0.9%
  • Other 1.3%