Skip to content

voganesyan/triton-sandbox

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

57 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

triton-sandbox

A sandbox repository for studying Triton Inference Server features.

Tracking by Detection

All stages of the algorithm are implemented as Triton models:

  • Detection Preprocessing (Python backend);
  • Detection (onnxruntime backend);
  • Detection Postprocessing (Python backend);
  • Tracking (Python backend).

The Detection model is based on YOLOv9-c detector.

The Tracking model is stateful which allows it to differentiate inference requests from multiple clients using provided CORRELATION ID.

Demo

Navigate to tracking-by-detection folder.

cd tracking-by-detection

Launching Triton

Launch a tritonserver docker container.

docker run --gpus=all -it --shm-size=256m --rm    -p8000:8000 -p8001:8001 -p8002:8002   -v ${PWD}:/workspace/ -v ${PWD}/model_repository:/models   nvcr.io/nvidia/tritonserver:24.01-py3

Install dependencies for our Python backend scripts.

pip install -r /models/tracking/1/ocsort/requirements.txt

Launch Triton.

tritonserver --model-repository=/models

Running Client

Run the client application.

python client.py --video test_data/MOT17-04-SDP-raw.webm

References

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published