Some cases are not implemented. This is provided as an artefact.
See Apple by Example for a demonstration of capabilities.
The compiler will bail out with arcane error messages rather than produce an incorrect result, except that the Python/R extension modules do not enforce type safety and thus may mysteriously segfault or produce unpredictable corrupt results.
Spilling (during register allocation) is not implemented for Arm.
Rather than an environment-based interpreter or a compiler invoked on the command line and generating object files, one calls a library function which returns assembly or machine code from a source string.
Thus the same implementation can be used interpreted, compiled, or called from another language.
> [((+)/x)%ℝ(:x)]\`7 (frange 1 10 10)
Arr (4) [4.0, 5.0, 6.0, 7.0]
>>> import apple
>>> import numpy as np
>>> sliding_mean=apple.jit('([((+)/x)%(ℝ(:x))]\`7)')
>>> sliding_mean(np.arange(0,10,dtype=np.float64))
array([3., 4., 5., 6.])
repl:1:> (import apple)
@{_ @{:value <cycle 0>} apple/jit @{:private true} apple/tyof @{:private true}}
repl:2:> (def sliding-mean (apple/jit ``([((+)/x)%ℝ(:x)]\`7)``))
<jit Vec (i + 7) float → Vec i float>
repl:3:> (sliding-mean @[0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0])
@[3 4 5 6 7]
> source("R/apple.R")
> sliding_mean<-jit("([((+)/x)%ℝ(:x)]\\`7)")
> run(sliding_mean,seq(0,10,1.0))
[1] 3 4 5 6 7
The JIT'ed moving average in Apple happens to be faster than the rolling mean from the zoo package.
This is based on J (and APL?). Looping is replaced by functoriality (rerank).
To supply a zero-cells (scalars) as the first argument to ⊲
(cons) and 1-cells as the second:
(⊲)`{0,1}
We can further specify that the cells should be selected along some axis, e.g. to get vector-matrix multiplication:
λA.λx.
{
dot ⇐ [(+)/(*)`x y];
(dot x)`{1∘[2]} (A::Arr (i`Cons`j`Cons`Nil) float)
}
The 2
means "iterate over the second axis" i.e. columns.
> :qc \x. [(+)/(*)`x y] x x >= 0.0
Passed, 100.
> :qc \x. [(+)/(*)`x y] x x > 2.0
Proposition failed!
[ Arr (5) [ 0.6213045301664751
, 0.6599381241699802
, 0.762478867048601
, 6.026206825450409e-3
, 0.5633419282435523 ] ]
Use ghcup to install cabal and GHC. Then:
make install
to install arepl
(the REPL).
Run
make
sudo make install-lib
To install the shared library (requires jq).
To install the Python module:
make install-py
Install libappler.so
on your system like so:
make -C Rc
sudo make install-r
Then:
source("R/apple.R")
to access the functions.
Uses jpm.
make -C janet install
Type \l
in the REPL to show the reference card:
> \l
Λ scan √ sqrt
⋉ max ⋊ min
⍳ integer range ⌊ floor
ℯ exp ⨳ {m,n} convolve
\~ successive application \`n dyadic infix
_. log 'n map
` zip `{i,j∘[k,l]} rank
𝒻 range (real) 𝜋 pi
_ negate : size
𝓉 dimension }.? last
->n select ** power
gen. generate 𝓕 fibonacci
re: repeat }. typesafe last
⊲ cons ⊳ snoc
^: iterate %. matmul
⊗ outer product |: transpose
{.? head {. typesafe head
}.? last }: typesafe init
⟨z,w⟩ array literal ?p,.e1,.e2 conditional
...
Enter :help
in REPL:
> :help
:help, :h Show this help
:ty <expression> Display the type of an expression
...
:h apple
lists potentially useful digraphs, viz.
← <-
⟜ o-
ℯ ee
Λ /\
⋮
To display module documentation:
>>> import apple
>>> help(apple)
CLASSES
builtins.object
AppleJIT
class AppleJIT(builtins.object)
| JIT-compiled function in-memory
|
| Methods defined here:
|
| __call__(self, /, *args, **kwargs)
| Call self as a function.
|
| ----------------------------------------------------------------------
FUNCTIONS
asm(...)
Dump assembly
ir(...)
Dump IR (debug)
jit(...)
Compile an expressoin into a callable object
typeof(...)
Display type of expression
repl:2:> (import apple)
@{_ @{:value <cycle 0>} apple/jit @{:private true} apple/tyof @{:private true}}
repl:4:> (doc apple/jit)
cfunction
Compile source string into Janet callable
nil
repl:5:> (doc apple/tyof)
cfunction
type of expression
nil