Skip to content

Commit

Permalink
[Kernel][Quantization] Integrate block-quantized CUTLASS kernels for …
Browse files Browse the repository at this point in the history
…DeepSeekV3 (#12587)

Integrates the block-quantized kernels introduced in
#11868 for use in linear
layers.

Signed-off-by: Tyler Michael Smith <[email protected]>
  • Loading branch information
tlrmchlsmth authored Jan 31, 2025
1 parent 145c2ff commit eb5741a
Show file tree
Hide file tree
Showing 8 changed files with 160 additions and 37 deletions.
1 change: 1 addition & 0 deletions csrc/ops.h
Original file line number Diff line number Diff line change
Expand Up @@ -153,6 +153,7 @@ torch::Tensor ggml_mul_mat_a8(torch::Tensor W, torch::Tensor X, int64_t type,

#ifndef USE_ROCM
bool cutlass_scaled_mm_supports_fp8(int64_t cuda_device_capability);
bool cutlass_scaled_mm_supports_block_fp8(int64_t cuda_device_capability);

void cutlass_scaled_mm(torch::Tensor& out, torch::Tensor const& a,
torch::Tensor const& b, torch::Tensor const& a_scales,
Expand Down
8 changes: 7 additions & 1 deletion csrc/quantization/cutlass_w8a8/scaled_mm_c3x.cu
Original file line number Diff line number Diff line change
Expand Up @@ -58,7 +58,13 @@ void cutlass_scaled_mm_sm90(torch::Tensor& c, torch::Tensor const& a,

vllm::cutlass_scaled_mm_blockwise_sm90_fp8(c, a, b, a_scales, b_scales);
} else {
TORCH_CHECK(false, "Unsupported scale group shapes for CUTLASS 3.x GEMM");
TORCH_CHECK(false,
"Unsupported scale group shapes for CUTLASS 3.x GEMM.\n "
"a_scale_group_shape must be [1, 128], got: [",
a_scale_group_shape[0], ", ", a_scale_group_shape[1],
"]\n"
"b_scale_group_shape must be [128, 128], got: [",
b_scale_group_shape[0], ", ", b_scale_group_shape[1], "]");
}
}

Expand Down
15 changes: 14 additions & 1 deletion csrc/quantization/cutlass_w8a8/scaled_mm_entry.cu
Original file line number Diff line number Diff line change
Expand Up @@ -81,6 +81,19 @@ bool cutlass_scaled_mm_supports_fp8(int64_t cuda_device_capability) {
return false;
}

bool cutlass_scaled_mm_supports_block_fp8(int64_t cuda_device_capability) {
// CUTLASS block-quantized FP8 kernels need at least CUDA 12.0
// and at least SM90 (Hopper)

#if defined CUDA_VERSION
if (cuda_device_capability >= 90) {
return CUDA_VERSION >= 12000;
}
#endif

return false;
}

void cutlass_scaled_mm(torch::Tensor& c, torch::Tensor const& a,
torch::Tensor const& b, torch::Tensor const& a_scales,
torch::Tensor const& b_scales,
Expand Down Expand Up @@ -212,4 +225,4 @@ void cutlass_scaled_mm_azp(torch::Tensor& c, torch::Tensor const& a,
"No compiled cutlass_scaled_mm_azp for a compute capability less than "
"CUDA device capability: ",
version_num);
}
}
7 changes: 7 additions & 0 deletions csrc/torch_bindings.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -324,6 +324,13 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
ops.def("cutlass_scaled_mm_supports_fp8(int cuda_device_capability) -> bool");
ops.impl("cutlass_scaled_mm_supports_fp8", &cutlass_scaled_mm_supports_fp8);

// Check if cutlass scaled_mm supports block quantization (used by DeepSeekV3)
ops.def(
"cutlass_scaled_mm_supports_block_fp8(int cuda_device_capability) -> "
"bool");
ops.impl("cutlass_scaled_mm_supports_block_fp8",
&cutlass_scaled_mm_supports_fp8);

// Check if cutlass sparse scaled_mm is supported for CUDA devices of the
// given capability
ops.def(
Expand Down
5 changes: 5 additions & 0 deletions vllm/_custom_ops.py
Original file line number Diff line number Diff line change
Expand Up @@ -435,6 +435,11 @@ def cutlass_scaled_mm_supports_fp8(cuda_device_capability: int) -> bool:
return torch.ops._C.cutlass_scaled_mm_supports_fp8(cuda_device_capability)


def cutlass_scaled_mm_supports_block_fp8(cuda_device_capability: int) -> bool:
return torch.ops._C.cutlass_scaled_mm_supports_block_fp8(
cuda_device_capability)


def cutlass_scaled_mm(a: torch.Tensor,
b: torch.Tensor,
scale_a: torch.Tensor,
Expand Down
5 changes: 4 additions & 1 deletion vllm/model_executor/layers/quantization/fp8.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,8 @@
is_layer_skipped)
from vllm.model_executor.layers.quantization.utils.w8a8_utils import (
all_close_1d, apply_fp8_linear, convert_to_channelwise,
cutlass_fp8_supported, normalize_e4m3fn_to_e4m3fnuz, per_tensor_dequantize,
cutlass_block_fp8_supported, cutlass_fp8_supported,
normalize_e4m3fn_to_e4m3fnuz, per_tensor_dequantize,
requantize_with_max_scale)
from vllm.model_executor.parameter import (BlockQuantScaleParameter,
ModelWeightParameter,
Expand Down Expand Up @@ -133,6 +134,7 @@ class Fp8LinearMethod(LinearMethodBase):
def __init__(self, quant_config: Fp8Config):
self.quant_config = quant_config
self.cutlass_fp8_supported = cutlass_fp8_supported()
self.cutlass_block_fp8_supported = cutlass_block_fp8_supported()

# For GPUs that lack FP8 hardware support, we can leverage the Marlin
# kernel for fast weight-only FP8 quantization
Expand Down Expand Up @@ -359,6 +361,7 @@ def apply(self,
weight_scale=layer.weight_scale_inv,
input_scale=layer.input_scale,
bias=bias,
cutlass_block_fp8_supported=self.cutlass_block_fp8_supported,
)

return apply_fp8_linear(
Expand Down
146 changes: 112 additions & 34 deletions vllm/model_executor/layers/quantization/utils/fp8_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,7 @@
import triton
import triton.language as tl

from vllm import _custom_ops as ops
from vllm.logger import init_logger
from vllm.platforms import current_platform

Expand All @@ -21,20 +22,34 @@ def apply_w8a8_block_fp8_linear(
weight_scale: torch.Tensor,
input_scale: Optional[torch.Tensor] = None,
bias: Optional[torch.Tensor] = None,
cutlass_block_fp8_supported: bool = True,
) -> torch.Tensor:
assert input_scale is None
# View input as 2D matrix for fp8 methods
input_2d = input.view(-1, input.shape[-1])
output_shape = [*input.shape[:-1], weight.shape[0]]

q_input, x_scale = per_token_group_quant_fp8(input_2d, block_size[1])
output = w8a8_block_fp8_matmul(q_input,
weight,
x_scale,
weight_scale,
block_size,
output_dtype=input.dtype)

shape_supported_by_cutlass = (weight.shape[0] % 128 == 0
and weight.shape[1] % 128 == 0)
if cutlass_block_fp8_supported and shape_supported_by_cutlass:
q_input, x_scale = per_token_group_quant_fp8(input_2d,
block_size[1],
column_major_scales=True)
output = ops.cutlass_scaled_mm(q_input,
weight.T,
out_dtype=input.dtype,
scale_a=x_scale,
scale_b=weight_scale.T)
else:
q_input, x_scale = per_token_group_quant_fp8(input_2d,
block_size[1],
column_major_scales=False)
output = w8a8_block_fp8_matmul(q_input,
weight,
x_scale,
weight_scale,
block_size,
output_dtype=input.dtype)
if bias is not None:
output = output + bias
return output.to(dtype=input.dtype).view(*output_shape)
Expand Down Expand Up @@ -98,10 +113,7 @@ def _per_token_group_quant_fp8(
y_ptr,
y_q_ptr,
y_s_ptr,
# Stride of input
y_stride,
# Columns of input
N,
group_size,
# Avoid to divide zero
eps,
# Information for float8
Expand All @@ -116,12 +128,60 @@ def _per_token_group_quant_fp8(
"""
# Map the program id to the row of X and Y it should compute.
g_id = tl.program_id(0)
y_ptr += g_id * y_stride
y_q_ptr += g_id * y_stride
y_ptr += g_id * group_size
y_q_ptr += g_id * group_size
y_s_ptr += g_id

cols = tl.arange(0, BLOCK) # N <= BLOCK
mask = cols < N
mask = cols < group_size

y = tl.load(y_ptr + cols, mask=mask, other=0.0).to(tl.float32)
# Quant
_absmax = tl.maximum(tl.max(tl.abs(y)), eps)
y_s = _absmax / fp8_max
y_q = tl.clamp(y / y_s, fp8_min, fp8_max).to(y_q_ptr.dtype.element_ty)

tl.store(y_q_ptr + cols, y_q, mask=mask)
tl.store(y_s_ptr, y_s)


@triton.jit
def _per_token_group_quant_fp8_colmajor(
# Pointers to inputs and output
y_ptr,
y_q_ptr,
y_s_ptr,
group_size,
# Num columns of y
y_num_columns,
# Stride from one column to the next of y_s
y_s_col_stride,
# Avoid to divide zero
eps,
# Information for float8
fp8_min,
fp8_max,
# Meta-parameters
BLOCK: tl.constexpr,
):
"""A Triton-accelerated function to perform per-token-group
quantization on a tensor.
This function converts the tensor values into float8 values.
"""
# Map the program id to the row of X and Y it should compute.
g_id = tl.program_id(0)
y_ptr += g_id * group_size
y_q_ptr += g_id * group_size

# Convert g_id the flattened block coordinate to 2D so we can index
# into the output y_scales matrix
blocks_per_row = y_num_columns // group_size
scale_col = g_id % blocks_per_row
scale_row = g_id // blocks_per_row
y_s_ptr += scale_col * y_s_col_stride + scale_row

cols = tl.arange(0, BLOCK) # group_size <= BLOCK
mask = cols < group_size

y = tl.load(y_ptr + cols, mask=mask, other=0.0).to(tl.float32)
# Quant
Expand All @@ -138,12 +198,13 @@ def per_token_group_quant_fp8(
group_size: int,
eps: float = 1e-10,
dtype: Optional[torch.dtype] = None,
column_major_scales: bool = False,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Function to perform per-token-group quantization on an input tensor `x`.
It converts the tensor values into signed float8 values and returns the
quantized tensor along with the scaling factor used for quantization.
Args:
x: The input tenosr with ndim >= 2.
x: The input tensor with ndim >= 2.
group_size: The group size used for quantization.
eps: The minimum to avoid dividing zero.
dtype: The dype of output tensor. Note that only `torch.float8_e4m3fn`
Expand All @@ -167,29 +228,46 @@ def per_token_group_quant_fp8(
x_q = torch.empty_like(x, device=x.device, dtype=dtype)
M = x.numel() // group_size
N = group_size
x_s = torch.empty(
x.shape[:-1] + (x.shape[-1] // group_size, ),
device=x.device,
dtype=torch.float32,
)
if column_major_scales:
shape = (x.shape[-1] // group_size, ) + x.shape[:-1]
x_s = torch.empty(shape, device=x.device,
dtype=torch.float32).permute(-1, -2)
else:
shape = x.shape[:-1] + (x.shape[-1] // group_size, )
x_s = torch.empty(shape, device=x.device, dtype=torch.float32)

BLOCK = triton.next_power_of_2(N)
# heuristics for number of warps
num_warps = min(max(BLOCK // 256, 1), 8)
num_stages = 1
_per_token_group_quant_fp8[(M, )](
x,
x_q,
x_s,
group_size,
N,
eps,
fp8_min=fp8_min,
fp8_max=fp8_max,
BLOCK=BLOCK,
num_warps=num_warps,
num_stages=num_stages,
)
if column_major_scales:
_per_token_group_quant_fp8_colmajor[(M, )](
x,
x_q,
x_s,
group_size,
x.shape[1],
x_s.stride(1),
eps,
fp8_min=fp8_min,
fp8_max=fp8_max,
BLOCK=BLOCK,
num_warps=num_warps,
num_stages=num_stages,
)
else:
_per_token_group_quant_fp8[(M, )](
x,
x_q,
x_s,
group_size,
eps,
fp8_min=fp8_min,
fp8_max=fp8_max,
BLOCK=BLOCK,
num_warps=num_warps,
num_stages=num_stages,
)

return x_q, x_s

Expand Down
10 changes: 10 additions & 0 deletions vllm/model_executor/layers/quantization/utils/w8a8_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -30,6 +30,16 @@ def cutlass_fp8_supported() -> bool:
return ops.cutlass_scaled_mm_supports_fp8(capability)


def cutlass_block_fp8_supported() -> bool:
if not current_platform.is_cuda():
return False

capability_tuple = current_platform.get_device_capability()
capability = -1 if capability_tuple is None else capability_tuple.to_int()

return ops.cutlass_scaled_mm_supports_block_fp8(capability)


def per_tensor_dequantize(
tensor: torch.Tensor, inv_scale: Union[float,
torch.Tensor]) -> torch.Tensor:
Expand Down

0 comments on commit eb5741a

Please sign in to comment.