Skip to content

Commit

Permalink
[VLM] merged multimodal processor and V1 support for idefics3 (#12660)
Browse files Browse the repository at this point in the history
Signed-off-by: Isotr0py <[email protected]>
Co-authored-by: Cyrus Leung <[email protected]>
  • Loading branch information
Isotr0py and DarkLight1337 authored Feb 4, 2025
1 parent 18a88fc commit 815079d
Show file tree
Hide file tree
Showing 7 changed files with 315 additions and 457 deletions.
2 changes: 1 addition & 1 deletion docs/source/models/supported_models.md
Original file line number Diff line number Diff line change
Expand Up @@ -733,7 +733,7 @@ See [this page](#generative-models) for more information on how to use generativ
* `HuggingFaceM4/Idefics3-8B-Llama3` etc.
* ✅︎
*
*
* ✅︎
- * `InternVLChatModel`
* InternVL 2.5, Mono-InternVL, InternVL 2.0
* T + I<sup>E+</sup>
Expand Down
4 changes: 2 additions & 2 deletions tests/models/decoder_only/vision_language/test_models.py
Original file line number Diff line number Diff line change
Expand Up @@ -254,14 +254,14 @@
patch_hf_runner=model_utils.h2ovl_patch_hf_runner,
),
"idefics3": VLMTestInfo(
models=["HuggingFaceM4/Idefics3-8B-Llama3"],
models=["HuggingFaceTB/SmolVLM-256M-Instruct"],
test_type=(VLMTestType.IMAGE, VLMTestType.MULTI_IMAGE),
prompt_formatter=lambda img_prompt:f"<|begin_of_text|>User:{img_prompt}<end_of_utterance>\nAssistant:", # noqa: E501
img_idx_to_prompt=lambda idx: "<image>",
max_model_len=8192,
max_num_seqs=2,
auto_cls=AutoModelForVision2Seq,
marks=[large_gpu_mark(min_gb=48)],
hf_output_post_proc=model_utils.idefics3_trunc_hf_output,
),
"intern_vl": VLMTestInfo(
models=[
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -192,6 +192,14 @@ def deepseekvl2_trunc_hf_output(hf_output: RunnerOutput,
return output_ids, output_str, out_logprobs


def idefics3_trunc_hf_output(hf_output: RunnerOutput,
model: str) -> RunnerOutput:
output_ids, output_str, out_logprobs = hf_output
if output_str.endswith("<end_of_utterance>"):
output_str = output_str.split("<end_of_utterance>")[0]
return output_ids, output_str, out_logprobs


def minicpmv_trunc_hf_output(hf_output: RunnerOutput,
model: str) -> RunnerOutput:
output_ids, output_str, out_logprobs = hf_output
Expand Down
1 change: 1 addition & 0 deletions tests/models/multimodal/processing/test_common.py
Original file line number Diff line number Diff line change
Expand Up @@ -149,6 +149,7 @@ def _test_processing_correctness(
"adept/fuyu-8b",
"h2oai/h2ovl-mississippi-800m",
"OpenGVLab/InternVL2-1B",
"HuggingFaceM4/Idefics3-8B-Llama3",
"llava-hf/llava-1.5-7b-hf",
"llava-hf/llava-v1.6-mistral-7b-hf",
"llava-hf/LLaVA-NeXT-Video-7B-hf",
Expand Down
179 changes: 33 additions & 146 deletions tests/models/multimodal/processing/test_idefics3.py
Original file line number Diff line number Diff line change
@@ -1,177 +1,64 @@
# SPDX-License-Identifier: Apache-2.0
"""Tests for Idefics3's multimodal preprocessing kwargs."""
from typing import Optional

import pytest
import torch
from transformers import AutoImageProcessor, AutoTokenizer
from transformers import Idefics3Config

from vllm.inputs import InputContext, token_inputs
from vllm.multimodal import MultiModalRegistry
from vllm.multimodal import MULTIMODAL_REGISTRY
from vllm.multimodal.utils import cached_get_tokenizer

from ....conftest import _ImageAssets
from ...utils import build_model_context

models = ["HuggingFaceM4/Idefics3-8B-Llama3"]


# Wrap lazy imports to avoid initializing CUDA during test collection
@pytest.fixture()
def input_processor_for_idefics3():
from vllm.model_executor.models.idefics3 import (
input_processor_for_idefics3)
return input_processor_for_idefics3


@pytest.fixture()
def dummy_data_for_idefics3():
from vllm.model_executor.models.idefics3 import dummy_data_for_idefics3
return dummy_data_for_idefics3


@pytest.fixture()
def get_max_idefics3_image_tokens():
from vllm.model_executor.models.idefics3 import (
get_max_idefics3_image_tokens)
return get_max_idefics3_image_tokens


@pytest.mark.parametrize("model", models)
@pytest.mark.parametrize("longest_edge", [None, 168, 336, 400, 2 * 336])
def test_input_mapper_override(model: str, image_assets: _ImageAssets,
longest_edge: Optional[int]):
"""Ensure that the [default] input mapper handles size properly."""

mm_processor_kwargs = {
"size": {
"longest_edge": longest_edge
}
} if longest_edge is not None else {}
ctx = build_model_context(
model_name=model,
tokenizer_name=model,
trust_remote_code=True,
mm_processor_kwargs=mm_processor_kwargs,
)

hf_processor = AutoImageProcessor.from_pretrained(model,
trust_remote_code=True,
**mm_processor_kwargs)

mm_registry = MultiModalRegistry()
mm_registry.init_mm_limits_per_prompt(ctx.model_config)

image = image_assets[0].pil_image
hf_result = hf_processor.preprocess(
image,
return_tensors="pt",
)

vllm_result = mm_registry.map_input(
ctx.model_config,
{"image": image},
)

assert torch.all(hf_result["pixel_values"] == vllm_result["pixel_values"])


@pytest.mark.parametrize("model", models)
@pytest.mark.parametrize("longest_edge, expected_max_tokens", [
(None, 2873),
(168, 169),
(336, 169),
(400, 338),
(672, 338),
])
def test_max_tokens_override(get_max_idefics3_image_tokens, model: str,
longest_edge: Optional[int],
expected_max_tokens: int):
"""Ensure get_max_idefics3_image_tokens handles mm_processor_kwargs."""
size = {"longest_edge": longest_edge} if longest_edge is not None else None
ctx = build_model_context(
model_name=model,
tokenizer_name=model,
trust_remote_code=True,
mm_processor_kwargs=None,
)

actual_max_tokens = get_max_idefics3_image_tokens(
ctx=InputContext(ctx.model_config),
size=size,
)

assert expected_max_tokens == actual_max_tokens


@pytest.mark.parametrize("model", models)
@pytest.mark.parametrize("longest_edge, toks_per_img, num_imgs", [
(168, 169, 1),
(168, 169, 2),
(400, 338, 1),
(400, 338, 2),
])
def test_dummy_data_override(dummy_data_for_idefics3, model: str,
longest_edge: int, toks_per_img: int,
num_imgs: int):
"""Ensure dummy_data_for_idefics3 handles num_crops properly."""
# Same as the previous test - don't initialize mm_processor_kwargs
# in this test and assume that the kwargs will be correctly expanded by
# the partial when calling the dummy data func.
size = {"longest_edge": longest_edge} if longest_edge is not None else None
ctx = build_model_context(
model_name=model,
tokenizer_name=model,
trust_remote_code=True,
mm_processor_kwargs=None,
)

dummy_data = dummy_data_for_idefics3(
ctx=ctx,
seq_len=8192, # Should be bigger than num_imgs * toks_per_img
mm_counts={"image": num_imgs},
size=size)
sequence_data = dummy_data.seq_data
# Ensure we have the right number of placeholders per size
image_token_id = ctx.get_hf_config().image_token_id
img_tok_count = sequence_data.get_token_ids().count(image_token_id)
assert img_tok_count == toks_per_img * num_imgs


@pytest.mark.parametrize("model", models)
@pytest.mark.parametrize("longest_edge,expected_toks_per_img,num_imgs", [
(336, 169 * (1**2 + 1), 1),
(336, 169 * (1**2 + 1), 2),
(400, 169 * (2**2 + 1), 1),
(400, 169 * (2**2 + 1), 2),
])
def test_input_processor_override(input_processor_for_idefics3,
image_assets: _ImageAssets, model: str,
longest_edge: int,
expected_toks_per_img: int, num_imgs: int):
# yapf: disable
@pytest.mark.parametrize(
("mm_processor_kwargs", "expected_toks_per_img"),
[
({"size": {"longest_edge": 364}}, 169),
({"size": {"longest_edge": 728}}, 169 * (2**2 + 1)),
])
# yapf: enable
@pytest.mark.parametrize("num_imgs", [1, 2])
def test_processor_override(image_assets: _ImageAssets, model: str,
mm_processor_kwargs: dict[str, object],
expected_toks_per_img: int, num_imgs: int):
"""Ensure input_processor_for_idefics3 handles num_crops properly."""
# Same as the previous test - don't initialize mm_processor_kwargs
# in this test and assume that the kwargs will be correctly expanded by
# the partial when calling the custom input processor.
size = {"longest_edge": longest_edge} if longest_edge is not None else None
ctx = build_model_context(
model_name=model,
tokenizer_name=model,
trust_remote_code=True,
mm_processor_kwargs=None,
limit_mm_per_prompt={"image": num_imgs},
)
tokenizer = cached_get_tokenizer(ctx.model_config.tokenizer)
processor = MULTIMODAL_REGISTRY.create_processor(
ctx.model_config,
tokenizer=tokenizer,
)
hf_processor = processor.info.get_hf_processor(**mm_processor_kwargs)

# Build the image str / prompt based on the number of images we pass
tokenizer = AutoTokenizer.from_pretrained(model)
placeholders = "<image>" if num_imgs == 1 else "\n".join(
f"Image-{i}: <image>\n" for i in range(1, num_imgs + 1))
prompt = f"<|begin_of_text|>User:{placeholders}\n<end_of_utterance>\nAssistant:" # noqa: E501
images = [image_assets[0].pil_image.resize((336 * 4, 336 * 4))] * num_imgs

inputs = token_inputs(prompt_token_ids=tokenizer.encode(prompt),
prompt=prompt,
multi_modal_data={"image": images})

processed_inputs = input_processor_for_idefics3(ctx, inputs, size=size)
# Build mm_data
image_size = ctx.get_hf_config(Idefics3Config).vision_config.image_size
dummy_image_size = (image_size * 4, image_size * 4)
dummy_image = image_assets[0].pil_image.resize(dummy_image_size)
mm_data = {"image": [dummy_image] * num_imgs}

processed_inputs = processor.apply(prompt, mm_data, mm_processor_kwargs)
# Ensure the placeholders format are correct
hf_processed_inputs = hf_processor(text=prompt, images=mm_data["image"])
assert processed_inputs["prompt_token_ids"] == hf_processed_inputs[
"input_ids"][0]

# Ensure we have the right number of placeholders per num_crops size
image_token_id = ctx.get_hf_config().image_token_id
Expand Down
18 changes: 18 additions & 0 deletions vllm/inputs/registry.py
Original file line number Diff line number Diff line change
Expand Up @@ -31,6 +31,17 @@
P = TypeVar("P", bound=ProcessorMixin, default=ProcessorMixin)


class HashableDict(dict):
"""
A dictionary that can be hashed by lru_cache.
"""

# NOTE: pythonic dict is not hashable,
# we override on it directly for simplicity
def __hash__(self) -> int: # type: ignore[override]
return hash(frozenset(self.items()))


@dataclass(frozen=True)
class InputContext:
"""
Expand Down Expand Up @@ -104,6 +115,13 @@ def get_hf_processor(
if isinstance(typ, type):
merged_kwargs["processor_cls"] = typ

# NOTE: Pythonic dict is not hashable and will raise unhashable type
# error when calling `cached_get_processor`, therefore we need to
# wrap it to a hashable dict.
for key, value in merged_kwargs.items():
if isinstance(value, dict):
merged_kwargs[key] = HashableDict(value)

hf_processor = cached_get_processor(
self.model_config.model,
trust_remote_code=self.model_config.trust_remote_code,
Expand Down
Loading

0 comments on commit 815079d

Please sign in to comment.