Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Training] Decouple Argument parser #1207

Merged
merged 5 commits into from
Mar 3, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions src/llmcompressor/args/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,3 +4,4 @@
from .model_arguments import ModelArguments
from .recipe_arguments import RecipeArguments
from .training_arguments import TrainingArguments
from .utils import parse_args
73 changes: 73 additions & 0 deletions src/llmcompressor/args/utils.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,73 @@
from typing import Tuple

from loguru import logger
from transformers import HfArgumentParser

from llmcompressor.args import (
DatasetArguments,
ModelArguments,
RecipeArguments,
TrainingArguments,
)
from llmcompressor.transformers.utils.helpers import resolve_processor_from_model_args


def parse_args(
include_training_args: bool = False, **kwargs
) -> Tuple[ModelArguments, DatasetArguments, RecipeArguments, TrainingArguments, str]:
"""
Keyword arguments passed in from `oneshot` or `train` will
separate the arguments into the following:

* ModelArguments in
src/llmcompressor/args/model_args.py
* DatasetArguments in
src/llmcompressor/args/dataset_args.py
* RecipeArguments in
src/llmcompressor/args/recipe_args.py
* TrainingArguments in
src/llmcompressor/args/training_args.py

ModelArguments, DatasetArguments, and RecipeArguments are used for both
`oneshot` and `train`. TrainingArguments is only used for `train`.

"""

# pop output_dir, used as an attr in TrainingArguments, where oneshot is not used
output_dir = kwargs.pop("output_dir", None)

parser_args = (ModelArguments, DatasetArguments, RecipeArguments)
if include_training_args:
parser_args += (TrainingArguments,)

parser = HfArgumentParser(parser_args)
parsed_args = parser.parse_dict(kwargs)

training_args = None
if include_training_args:
model_args, dataset_args, recipe_args, training_args = parsed_args
if output_dir is not None:
training_args.output_dir = output_dir
else:
model_args, dataset_args, recipe_args = parsed_args

if recipe_args.recipe_args is not None:
if not isinstance(recipe_args.recipe_args, dict):
arg_dict = {}
for recipe_arg in recipe_args.recipe_args:
key, value = recipe_arg.split("=")
arg_dict[key] = value
recipe_args.recipe_args = arg_dict

# raise depreciation warnings
if dataset_args.remove_columns is not None:
logger.warn(
"`remove_columns` argument is depreciated. When tokenizing datasets, all "
"columns which are invalid inputs the tokenizer will be removed",
DeprecationWarning,
)

# silently assign tokenizer to processor
resolve_processor_from_model_args(model_args)

return model_args, dataset_args, recipe_args, training_args, output_dir
74 changes: 6 additions & 68 deletions src/llmcompressor/entrypoints/oneshot.py
Original file line number Diff line number Diff line change
@@ -1,11 +1,11 @@
from pathlib import PosixPath
from typing import Optional, Tuple
from typing import Optional

from loguru import logger
from torch.utils.data import DataLoader
from transformers import HfArgumentParser, PreTrainedModel
from transformers import PreTrainedModel

from llmcompressor.args import DatasetArguments, ModelArguments, RecipeArguments
from llmcompressor.args import parse_args
from llmcompressor.core.session_functions import active_session
from llmcompressor.transformers.finetune.data.data_helpers import (
get_calibration_dataloader,
Expand All @@ -18,9 +18,8 @@
modify_save_pretrained,
patch_tied_tensors_bug,
)
from llmcompressor.transformers.utils.helpers import resolve_processor_from_model_args

__all__ = ["Oneshot", "oneshot", "parse_oneshot_args"]
__all__ = ["Oneshot", "oneshot"]


class Oneshot:
Expand Down Expand Up @@ -123,10 +122,10 @@ def __init__(

"""

model_args, data_args, recipe_args, output_dir = parse_oneshot_args(**kwargs)
model_args, dataset_args, recipe_args, _, output_dir = parse_args(**kwargs)

self.model_args = model_args
self.data_args = data_args
self.data_args = dataset_args
self.recipe_args = recipe_args
self.output_dir = output_dir

Expand Down Expand Up @@ -310,64 +309,3 @@ def oneshot(**kwargs) -> PreTrainedModel:
one_shot()

return one_shot.model


def parse_oneshot_args(
**kwargs,
) -> Tuple[ModelArguments, DatasetArguments, RecipeArguments, str]:
"""
Parses kwargs by grouping into model, data or training arg groups:
* model_args in
src/llmcompressor/transformers/utils/arg_parser/model_args.py
* data_args in
src/llmcompressor/transformers/utils/arg_parser/data_args.py
* recipe_args in
src/llmcompressor/transformers/utils/arg_parser/recipe_args.py
* training_args in
src/llmcompressor/transformers/utils/arg_parser/training_args.py
"""
output_dir = kwargs.pop("output_dir", None)

parser = HfArgumentParser((ModelArguments, DatasetArguments, RecipeArguments))

if not kwargs:

def _get_output_dir_from_argv() -> Optional[str]:
import sys

output_dir = None
if "--output_dir" in sys.argv:
index = sys.argv.index("--output_dir")
sys.argv.pop(index)
if index < len(sys.argv): # Check if value exists afer the flag
output_dir = sys.argv.pop(index)

return output_dir

output_dir = _get_output_dir_from_argv() or output_dir
parsed_args = parser.parse_args_into_dataclasses()
else:
parsed_args = parser.parse_dict(kwargs)

model_args, data_args, recipe_args = parsed_args

if recipe_args.recipe_args is not None:
if not isinstance(recipe_args.recipe_args, dict):
arg_dict = {}
for recipe_arg in recipe_args.recipe_args:
key, value = recipe_arg.split("=")
arg_dict[key] = value
recipe_args.recipe_args = arg_dict

# raise depreciation warnings
if data_args.remove_columns is not None:
logger.warning(
"`remove_columns` argument is depreciated. When tokenizing datasets, all "
"columns which are invalid inputs the tokenizer will be removed",
DeprecationWarning,
)

# silently assign tokenizer to processor
resolve_processor_from_model_args(model_args)

return model_args, data_args, recipe_args, output_dir
4 changes: 2 additions & 2 deletions tests/llmcompressor/entrypoints/test_oneshot.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
from transformers import AutoModelForCausalLM

from llmcompressor import Oneshot
from llmcompressor.entrypoints.oneshot import parse_oneshot_args
from llmcompressor.args import parse_args


def test_oneshot_from_args():
Expand All @@ -17,7 +17,7 @@ def test_oneshot_from_args():

output_dir = "bar_output_dir"

model_args, data_args, recipe_args, output_dir = parse_oneshot_args(
model_args, data_args, recipe_args, _, output_dir = parse_args(
model=model,
dataset=dataset,
recipe=recipe,
Expand Down