Skip to content

Commit

Permalink
revert example script
Browse files Browse the repository at this point in the history
Signed-off-by: George Ohashi <[email protected]>
  • Loading branch information
horheynm committed Feb 26, 2025
1 parent 727a197 commit c84e7c5
Showing 1 changed file with 62 additions and 87 deletions.
149 changes: 62 additions & 87 deletions examples/quantization_w4a16/llama3_example.py
Original file line number Diff line number Diff line change
@@ -1,105 +1,80 @@
# from datasets import load_dataset
# from transformers import AutoModelForCausalLM, AutoTokenizer

# from llmcompressor.modifiers.quantization import GPTQModifier
# from llmcompressor.transformers import oneshot

# # Select model and load it.
# MODEL_ID = "meta-llama/Meta-Llama-3-8B-Instruct"

# model = AutoModelForCausalLM.from_pretrained(
# MODEL_ID,
# device_map="auto",
# torch_dtype="auto",
# )
# tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)

# # Select calibration dataset.
# DATASET_ID = "HuggingFaceH4/ultrachat_200k"
# DATASET_SPLIT = "train_sft"

# # Select number of samples. 512 samples is a good place to start.
# # Increasing the number of samples can improve accuracy.
# NUM_CALIBRATION_SAMPLES = 512
# MAX_SEQUENCE_LENGTH = 2048

# # Load dataset and preprocess.
# ds = load_dataset(DATASET_ID, split=DATASET_SPLIT)
# ds = ds.shuffle(seed=42).select(range(NUM_CALIBRATION_SAMPLES))


# def preprocess(example):
# return {
# "text": tokenizer.apply_chat_template(
# example["messages"],
# tokenize=False,
# )
# }
from datasets import load_dataset
from transformers import AutoModelForCausalLM, AutoTokenizer

from llmcompressor.modifiers.quantization import GPTQModifier
from llmcompressor.transformers import oneshot

# ds = ds.map(preprocess)
# Select model and load it.
MODEL_ID = "meta-llama/Meta-Llama-3-8B-Instruct"

model = AutoModelForCausalLM.from_pretrained(
MODEL_ID,
device_map="auto",
torch_dtype="auto",
)
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)

# # Tokenize inputs.
# def tokenize(sample):
# return tokenizer(
# sample["text"],
# padding=False,
# max_length=MAX_SEQUENCE_LENGTH,
# truncation=True,
# add_special_tokens=False,
# )
# Select calibration dataset.
DATASET_ID = "HuggingFaceH4/ultrachat_200k"
DATASET_SPLIT = "train_sft"

# Select number of samples. 512 samples is a good place to start.
# Increasing the number of samples can improve accuracy.
NUM_CALIBRATION_SAMPLES = 512
MAX_SEQUENCE_LENGTH = 2048

# ds = ds.map(tokenize, remove_columns=ds.column_names)
# Load dataset and preprocess.
ds = load_dataset(DATASET_ID, split=DATASET_SPLIT)
ds = ds.shuffle(seed=42).select(range(NUM_CALIBRATION_SAMPLES))

# # Configure the quantization algorithm to run.
# # * quantize the weights to 4 bit with GPTQ with a group size 128
# recipe = GPTQModifier(targets="Linear", scheme="W4A16", ignore=["lm_head"])

# # Apply algorithms.
# oneshot(
# model=model,
# dataset=ds,
# recipe=recipe,
# max_seq_length=MAX_SEQUENCE_LENGTH,
# num_calibration_samples=NUM_CALIBRATION_SAMPLES,
# )
def preprocess(example):
return {
"text": tokenizer.apply_chat_template(
example["messages"],
tokenize=False,
)
}

# # Confirm generations of the quantized model look sane.
# print("\n\n")
# print("========== SAMPLE GENERATION ==============")
# input_ids = tokenizer("Hello my name is", return_tensors="pt").input_ids.to("cuda")
# output = model.generate(input_ids, max_new_tokens=100)
# print(tokenizer.decode(output[0]))
# print("==========================================\n\n")

# # Save to disk compressed.
# SAVE_DIR = MODEL_ID.split("/")[1] + "-W4A16-G128"
# model.save_pretrained(SAVE_DIR, save_compressed=True)
# tokenizer.save_pretrained(SAVE_DIR)
ds = ds.map(preprocess)


from transformers import AutoModelForCausalLM, AutoTokenizer
# Tokenize inputs.
def tokenize(sample):
return tokenizer(
sample["text"],
padding=False,
max_length=MAX_SEQUENCE_LENGTH,
truncation=True,
add_special_tokens=False,
)

from llmcompressor import oneshot
from llmcompressor.modifiers.quantization import QuantizationModifier

# Define the model to compress
MODEL_ID = "meta-llama/Meta-Llama-3-8B-Instruct"
ds = ds.map(tokenize, remove_columns=ds.column_names)

# Load the model
model = AutoModelForCausalLM.from_pretrained(
MODEL_ID, device_map="auto", torch_dtype="auto"
)
# Load the tokenizer
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
# Configure the quantization algorithm to run.
# * quantize the weights to 4 bit with GPTQ with a group size 128
recipe = GPTQModifier(targets="Linear", scheme="W4A16", ignore=["lm_head"])

# Define the recipe, scheme="FP8_DYNAMIC" compresses to W8A8, which is
# FP8 channel-wise for weight, and FP8 dynamic per token activation
recipe = QuantizationModifier(
targets="Linear", scheme="FP8_DYNAMIC", ignore=["lm_head"]
# Apply algorithms.
oneshot(
model=model,
dataset=ds,
recipe=recipe,
max_seq_length=MAX_SEQUENCE_LENGTH,
num_calibration_samples=NUM_CALIBRATION_SAMPLES,
)

# compress the model
oneshot(model=model, recipe=recipe)
# Confirm generations of the quantized model look sane.
print("\n\n")
print("========== SAMPLE GENERATION ==============")
input_ids = tokenizer("Hello my name is", return_tensors="pt").input_ids.to("cuda")
output = model.generate(input_ids, max_new_tokens=100)
print(tokenizer.decode(output[0]))
print("==========================================\n\n")

# Save to disk compressed.
SAVE_DIR = MODEL_ID.split("/")[1] + "-W4A16-G128"
model.save_pretrained(SAVE_DIR, save_compressed=True)
tokenizer.save_pretrained(SAVE_DIR)

0 comments on commit c84e7c5

Please sign in to comment.