-
Notifications
You must be signed in to change notification settings - Fork 94
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Signed-off-by: George Ohashi <[email protected]>
- Loading branch information
Showing
1 changed file
with
62 additions
and
87 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,105 +1,80 @@ | ||
# from datasets import load_dataset | ||
# from transformers import AutoModelForCausalLM, AutoTokenizer | ||
|
||
# from llmcompressor.modifiers.quantization import GPTQModifier | ||
# from llmcompressor.transformers import oneshot | ||
|
||
# # Select model and load it. | ||
# MODEL_ID = "meta-llama/Meta-Llama-3-8B-Instruct" | ||
|
||
# model = AutoModelForCausalLM.from_pretrained( | ||
# MODEL_ID, | ||
# device_map="auto", | ||
# torch_dtype="auto", | ||
# ) | ||
# tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) | ||
|
||
# # Select calibration dataset. | ||
# DATASET_ID = "HuggingFaceH4/ultrachat_200k" | ||
# DATASET_SPLIT = "train_sft" | ||
|
||
# # Select number of samples. 512 samples is a good place to start. | ||
# # Increasing the number of samples can improve accuracy. | ||
# NUM_CALIBRATION_SAMPLES = 512 | ||
# MAX_SEQUENCE_LENGTH = 2048 | ||
|
||
# # Load dataset and preprocess. | ||
# ds = load_dataset(DATASET_ID, split=DATASET_SPLIT) | ||
# ds = ds.shuffle(seed=42).select(range(NUM_CALIBRATION_SAMPLES)) | ||
|
||
|
||
# def preprocess(example): | ||
# return { | ||
# "text": tokenizer.apply_chat_template( | ||
# example["messages"], | ||
# tokenize=False, | ||
# ) | ||
# } | ||
from datasets import load_dataset | ||
from transformers import AutoModelForCausalLM, AutoTokenizer | ||
|
||
from llmcompressor.modifiers.quantization import GPTQModifier | ||
from llmcompressor.transformers import oneshot | ||
|
||
# ds = ds.map(preprocess) | ||
# Select model and load it. | ||
MODEL_ID = "meta-llama/Meta-Llama-3-8B-Instruct" | ||
|
||
model = AutoModelForCausalLM.from_pretrained( | ||
MODEL_ID, | ||
device_map="auto", | ||
torch_dtype="auto", | ||
) | ||
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) | ||
|
||
# # Tokenize inputs. | ||
# def tokenize(sample): | ||
# return tokenizer( | ||
# sample["text"], | ||
# padding=False, | ||
# max_length=MAX_SEQUENCE_LENGTH, | ||
# truncation=True, | ||
# add_special_tokens=False, | ||
# ) | ||
# Select calibration dataset. | ||
DATASET_ID = "HuggingFaceH4/ultrachat_200k" | ||
DATASET_SPLIT = "train_sft" | ||
|
||
# Select number of samples. 512 samples is a good place to start. | ||
# Increasing the number of samples can improve accuracy. | ||
NUM_CALIBRATION_SAMPLES = 512 | ||
MAX_SEQUENCE_LENGTH = 2048 | ||
|
||
# ds = ds.map(tokenize, remove_columns=ds.column_names) | ||
# Load dataset and preprocess. | ||
ds = load_dataset(DATASET_ID, split=DATASET_SPLIT) | ||
ds = ds.shuffle(seed=42).select(range(NUM_CALIBRATION_SAMPLES)) | ||
|
||
# # Configure the quantization algorithm to run. | ||
# # * quantize the weights to 4 bit with GPTQ with a group size 128 | ||
# recipe = GPTQModifier(targets="Linear", scheme="W4A16", ignore=["lm_head"]) | ||
|
||
# # Apply algorithms. | ||
# oneshot( | ||
# model=model, | ||
# dataset=ds, | ||
# recipe=recipe, | ||
# max_seq_length=MAX_SEQUENCE_LENGTH, | ||
# num_calibration_samples=NUM_CALIBRATION_SAMPLES, | ||
# ) | ||
def preprocess(example): | ||
return { | ||
"text": tokenizer.apply_chat_template( | ||
example["messages"], | ||
tokenize=False, | ||
) | ||
} | ||
|
||
# # Confirm generations of the quantized model look sane. | ||
# print("\n\n") | ||
# print("========== SAMPLE GENERATION ==============") | ||
# input_ids = tokenizer("Hello my name is", return_tensors="pt").input_ids.to("cuda") | ||
# output = model.generate(input_ids, max_new_tokens=100) | ||
# print(tokenizer.decode(output[0])) | ||
# print("==========================================\n\n") | ||
|
||
# # Save to disk compressed. | ||
# SAVE_DIR = MODEL_ID.split("/")[1] + "-W4A16-G128" | ||
# model.save_pretrained(SAVE_DIR, save_compressed=True) | ||
# tokenizer.save_pretrained(SAVE_DIR) | ||
ds = ds.map(preprocess) | ||
|
||
|
||
from transformers import AutoModelForCausalLM, AutoTokenizer | ||
# Tokenize inputs. | ||
def tokenize(sample): | ||
return tokenizer( | ||
sample["text"], | ||
padding=False, | ||
max_length=MAX_SEQUENCE_LENGTH, | ||
truncation=True, | ||
add_special_tokens=False, | ||
) | ||
|
||
from llmcompressor import oneshot | ||
from llmcompressor.modifiers.quantization import QuantizationModifier | ||
|
||
# Define the model to compress | ||
MODEL_ID = "meta-llama/Meta-Llama-3-8B-Instruct" | ||
ds = ds.map(tokenize, remove_columns=ds.column_names) | ||
|
||
# Load the model | ||
model = AutoModelForCausalLM.from_pretrained( | ||
MODEL_ID, device_map="auto", torch_dtype="auto" | ||
) | ||
# Load the tokenizer | ||
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) | ||
# Configure the quantization algorithm to run. | ||
# * quantize the weights to 4 bit with GPTQ with a group size 128 | ||
recipe = GPTQModifier(targets="Linear", scheme="W4A16", ignore=["lm_head"]) | ||
|
||
# Define the recipe, scheme="FP8_DYNAMIC" compresses to W8A8, which is | ||
# FP8 channel-wise for weight, and FP8 dynamic per token activation | ||
recipe = QuantizationModifier( | ||
targets="Linear", scheme="FP8_DYNAMIC", ignore=["lm_head"] | ||
# Apply algorithms. | ||
oneshot( | ||
model=model, | ||
dataset=ds, | ||
recipe=recipe, | ||
max_seq_length=MAX_SEQUENCE_LENGTH, | ||
num_calibration_samples=NUM_CALIBRATION_SAMPLES, | ||
) | ||
|
||
# compress the model | ||
oneshot(model=model, recipe=recipe) | ||
# Confirm generations of the quantized model look sane. | ||
print("\n\n") | ||
print("========== SAMPLE GENERATION ==============") | ||
input_ids = tokenizer("Hello my name is", return_tensors="pt").input_ids.to("cuda") | ||
output = model.generate(input_ids, max_new_tokens=100) | ||
print(tokenizer.decode(output[0])) | ||
print("==========================================\n\n") | ||
|
||
# Save to disk compressed. | ||
SAVE_DIR = MODEL_ID.split("/")[1] + "-W4A16-G128" | ||
model.save_pretrained(SAVE_DIR, save_compressed=True) | ||
tokenizer.save_pretrained(SAVE_DIR) |