forked from huonw/fast-math
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Partially adresses huonw#1.
- Loading branch information
Showing
2 changed files
with
193 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,191 @@ | ||
/// Calculate the numerator of the `tanh` approximation. | ||
fn a(x: f32) -> f32 { | ||
let x2 = x * x; | ||
(((x2 + 378.) * x2 + 17325.) * x2 + 135135.) * x | ||
} | ||
|
||
/// Calculate the denominator of the `tanh` approximation. | ||
fn b(x: f32) -> f32 { | ||
let x2 = x * x; | ||
((28. * x2 + 3150.) * x2 + 62370.) * x2 + 135135. | ||
} | ||
|
||
/// Compute a fast approximation of the hyperbolic tangent of `x`. | ||
/// | ||
/// For large |x|, the output may be outside of [-1, 1]. | ||
#[inline] | ||
pub fn tanh_raw(x: f32) -> f32 { | ||
// Implementation based on | ||
// https://varietyofsound.wordpress.com/2011/02/14/efficient-tanh-computation-using-lamberts-continued-fraction | ||
a(x) / b(x) | ||
} | ||
|
||
/// Compute a fast approximation of the hyperbolic tangent of `x`. | ||
/// | ||
/// See `atanh_raw` for a faster version that may return incorrect results for | ||
/// large `|x|` and `nan`. | ||
#[inline] | ||
pub fn tanh(x: f32) -> f32 { | ||
if x.is_nan() { | ||
return x; | ||
} | ||
|
||
let a = a(x); | ||
if !a.is_finite() { | ||
return if a < 0. { -1. } else { 1. }; | ||
} | ||
|
||
let result = a / b(x); | ||
if result > 1. { | ||
return 1.; | ||
} | ||
if result < -1. { | ||
return -1.; | ||
} | ||
result | ||
} | ||
|
||
#[cfg(test)] | ||
mod tests { | ||
use super::*; | ||
use quickcheck as qc; | ||
use std::f32 as f; | ||
|
||
/// Maximal absolute error. | ||
const TOL: f32 = 0.0001; | ||
|
||
#[test] | ||
fn tanh_abs_err_qc() { | ||
fn prop(x: f32) -> qc::TestResult { | ||
let e = tanh(x); | ||
let t = x.tanh(); | ||
let abs = (e - t).abs(); | ||
|
||
qc::TestResult::from_bool(abs < TOL) | ||
} | ||
qc::quickcheck(prop as fn(f32) -> qc::TestResult) | ||
} | ||
|
||
const PREC: u32 = 1 << 20; | ||
#[test] | ||
fn tanh_abs_err_exhaustive() { | ||
for i in 0..PREC + 1 { | ||
for j in -5..6 { | ||
let x = (1.0 + i as f32 / PREC as f32) * 2f32.powi(j * 20); | ||
{ | ||
let e = tanh(x); | ||
let t = x.tanh(); | ||
let abs = (e - t).abs(); | ||
|
||
assert!(abs < TOL, | ||
"{:.8}: {:.8}, {:.8}. {:.4}", x, e, t, abs); | ||
} | ||
{ | ||
let e = tanh(-x); | ||
let t = (-x).tanh(); | ||
let abs = (e - t).abs(); | ||
|
||
assert!(abs < TOL, | ||
"{:.8}: {:.8}, {:.8}. {:.4}", -x, e, t, abs); | ||
} | ||
} | ||
} | ||
} | ||
|
||
#[test] | ||
fn tanh_edge_cases() { | ||
assert!(tanh(f::NAN).is_nan()); | ||
assert_eq!(tanh(f::NEG_INFINITY), -1.); | ||
assert_eq!(tanh(f::INFINITY), 1.); | ||
} | ||
|
||
#[test] | ||
fn tanh_denormals() { | ||
fn prop(x: u8, y: u16) -> bool { | ||
let signif = ((x as u32) << 16) | (y as u32); | ||
let mut x = ::float::recompose(0, 1, signif); | ||
|
||
for _ in 0..23 { | ||
{ | ||
let e = tanh(x); | ||
let t = x.tanh(); | ||
let abs = (e - t).abs(); | ||
if abs >= TOL { | ||
return false | ||
} | ||
} | ||
{ | ||
let e = tanh(-x); | ||
let t = (-x).tanh(); | ||
let abs = (e - t).abs(); | ||
if abs >= TOL { | ||
return false | ||
} | ||
} | ||
|
||
x /= 2.0; | ||
} | ||
true | ||
} | ||
qc::quickcheck(prop as fn(u8, u16) -> bool) | ||
} | ||
|
||
#[test] | ||
fn tanh_raw_denormals() { | ||
fn prop(x: u8, y: u16) -> bool { | ||
let signif = ((x as u32) << 16) | (y as u32); | ||
let mut x = ::float::recompose(0, 1, signif); | ||
|
||
for _ in 0..23 { | ||
let e = tanh_raw(x); | ||
let t = x.tanh(); | ||
let abs = (e - t).abs(); | ||
if abs >= TOL { | ||
return false | ||
} | ||
|
||
x /= 2.0; | ||
} | ||
true | ||
} | ||
qc::quickcheck(prop as fn(u8, u16) -> bool) | ||
} | ||
} | ||
|
||
#[cfg(all(test, feature = "unstable"))] | ||
mod benches { | ||
use test::{Bencher, black_box}; | ||
|
||
const TAB: &'static [f32] = | ||
&[ 0.85708036, 2.43390621, 2.80163358, 2.55126348, 3.18046186, | ||
2.88689427, 0.32215155, 0.07701401, 1.22922506, 0.4580259 , | ||
0.01257442, 4.23107197, 0.89538113, 1.65219582, 0.14632742, | ||
1.68663984, 1.88125115, 2.16773942, 1.27461936, 1.03091265]; | ||
|
||
#[bench] | ||
fn tanh(b: &mut Bencher) { | ||
b.iter(|| { | ||
for &x in black_box(TAB) { | ||
black_box(super::tanh(x)); | ||
} | ||
}) | ||
} | ||
|
||
#[bench] | ||
fn tanh_raw(b: &mut Bencher) { | ||
b.iter(|| { | ||
for &x in black_box(TAB) { | ||
black_box(super::tanh_raw(x)); | ||
} | ||
}) | ||
} | ||
|
||
#[bench] | ||
fn tanh_std(b: &mut Bencher) { | ||
b.iter(|| { | ||
for &x in black_box(TAB) { | ||
black_box(x.tanh()); | ||
} | ||
}) | ||
} | ||
} |