-
Notifications
You must be signed in to change notification settings - Fork 15
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Initial Electrical Conductivity Methods
- Loading branch information
Showing
8 changed files
with
677 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,56 @@ | ||
function [ VBR ] = DK2014( VBR ) | ||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | ||
% | ||
% [ VBR ] = DK2014( VBR ) | ||
% | ||
% experimental results on the electrical conductivity in | ||
% hydrated olivine single crystals measured under a broader temperature range | ||
% | ||
% Parameters: | ||
% ---------- | ||
% VBR the VBR structure | ||
% | ||
% Output: | ||
% ------ | ||
% VBR the VBR structure, with VBR.out.electric.DK2014_ol structure | ||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | ||
|
||
% read in eletric parameters | ||
ele = VBR.in.electric.DK2014_ol; | ||
T = VBR.in.SV.T; % K (Temperature) | ||
Ch2o = VBR.in.SV.Ch2o; % ppm (water content) | ||
P = VBR.in.SV.P; % GPa (Pressure) | ||
|
||
% Low Temperature Conduction | ||
S1 = ele.S_1; % S/m | ||
Va_1 = ele.Va_1; % cc/mol (activation volume) | ||
H1 = ele.H_1 + Va_1.*P; % kJ/mol | ||
R = ele.R_1; % kJ/(mol*K) | ||
|
||
% High Temperature Conduction | ||
S2 = ele.S_2; % S/m | ||
Va_2 = ele.Va_2; % cc/mol (activation volume) | ||
H2 = ele.H_2 + Va_2.*P; % kJ/mol | ||
|
||
ch2o_o = ele.ch2o_o; % ppm, experimental reference water content | ||
r = ele.r; % unitless | ||
|
||
% calculate arrhenius relation for each conduction mechanism | ||
esig_1 = arrh_dry(S1,H1,R,T); | ||
esig_2 = arrh_dry(S2,H2,R,T); | ||
|
||
% summation of conduction mechanisms | ||
esig = esig_1 + esig_2; % S/m | ||
esig = ((Ch2o./ch2o_o).^r).*esig; | ||
|
||
% store in VBR structure | ||
DK2014_ol.esig_i = esig_1; | ||
DK2014_ol.esig_h = esig_2; | ||
DK2014_ol.esig = esig; | ||
VBR.out.electric.DK2014_ol = DK2014_ol; | ||
end | ||
|
||
function sig = arrh_dry(S,H,k,T) | ||
exponent = -(H)./(k.*T); | ||
sig = (10^S).*exp(exponent); | ||
end |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,50 @@ | ||
function [ VBR ] = SEO3( VBR ) | ||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | ||
% | ||
% [ VBR ] = SEO3( VBR ) | ||
% | ||
% Standard Electrical Olivine 3 model based on point defects in a dunite | ||
% from temperature for anhydrous olivine | ||
% | ||
% Parameters: | ||
% ---------- | ||
% VBR the VBR structure | ||
% | ||
% Output: | ||
% ------ | ||
% VBR the VBR structure, with VBR.out.electric.yosh2009_ol structure | ||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | ||
|
||
% read in eletric parameters | ||
ele = VBR.in.electric.SEO3_ol; | ||
T = VBR.in.SV.T; % K (Temperature) | ||
|
||
% calculate oxygen fugacity from SV.T | ||
fO2 = OxF(T); % Pa | ||
|
||
% calculation of conductivity | ||
sig = SEO3_ne(T, fO2); | ||
|
||
% store in VBR structure | ||
SEO3_ol.sig = sig; | ||
VBR.out.electric.yosh2009_ol = SEO3_ol; | ||
end | ||
|
||
function fO2 = OxF(T) | ||
qfm = -24441.9./(T) + 13.296; %revised QFM-fO2 from Jones et al 2009 | ||
fO2 = 10.^qfm; | ||
end | ||
|
||
function sT = SEO3_ne(T, fO2) | ||
e = 1.602e-19; | ||
k = 8.617e-5; | ||
kT = k*(T); | ||
bfe = (5.06e24)*exp((-0.357)./kT); | ||
bmg = (4.58e26)*exp((-0.752)./kT); | ||
ufe = (12.2e-6)*exp((-1.05)./kT); | ||
umg = (2.72e-6)*exp((-1.09)./kT); | ||
concFe = bfe + (3.33e24)*exp((-0.02)./kT).*fO2.^(1/6); | ||
concMg = bmg + (6.21e30)*exp((-1.83)./kT).*fO2.^(1/6); | ||
sT = concFe.*ufe*e + 2*concMg.*umg*e; | ||
return | ||
end |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,66 @@ | ||
function [ VBR ] = UHO2014( VBR ) | ||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | ||
% | ||
% [ VBR ] = UHO2014( VBR ) | ||
% | ||
% Review of experimental hyrous conductivity of Olivine evaluated with | ||
% water concentration correction (Withers, 2012) | ||
% | ||
% Parameters: | ||
% ---------- | ||
% VBR the VBR structure | ||
% | ||
% Output: | ||
% ------ | ||
% VBR the VBR structure, with VBR.out.electric.UHO2014_ol structure | ||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | ||
|
||
% read in eletric parameters | ||
ele = VBR.in.electric.UHO2014_ol; | ||
T = VBR.in.SV.T; % K (Temperature) | ||
Ch2o = VBR.in.SV.Ch2o; % ppm (water content) | ||
P = VBR.in.SV.P; % GPa (Pressure) | ||
|
||
% Vacancy Conduction | ||
Sv = ele.S_v; % S/m | ||
Va_v = ele.Va_v; % cc/mol | ||
Hv = ele.H_v + Va_v.*P; % kJ | ||
|
||
% Polaron Conduction | ||
Sp = ele.S_p; % S/m | ||
Va_p = ele.Va_p; % cc/mol | ||
Hp = ele.H_p + Va_p.*P; % kJ | ||
|
||
% Hydrous Conduction | ||
Sh = ele.S_h; % S/m | ||
Va_h = ele.Va_h; % cc/mol | ||
Hh = ele.H_h + Va_h.*P; % kJ | ||
R = ele.R_h; % kJ/(mol*K) | ||
a = ele.a_h; % unitless | ||
r = ele.r_h; % unitless | ||
|
||
% calculate arrhenius relation for each conduction mechanism | ||
esig_v = arrh_dry(Sv,Hv,R,T); | ||
esig_p = arrh_dry(Sp,Hp,R,T); | ||
esig_h = arrh_wet(Sh,Hh,R,T,Ch2o,a,r); | ||
|
||
% summation of conduction mechanisms | ||
esig = esig_v + esig_p + esig_h; % S/m | ||
|
||
% store in VBR structure | ||
UHO2014_ol.esig_i = esig_v; | ||
UHO2014_ol.esig_h = esig_p; | ||
UHO2014_ol.esig_p = esig_h; | ||
UHO2014_ol.esig = esig; | ||
VBR.out.electric.UHO2014_ol = UHO2014_ol; | ||
end | ||
|
||
function sig = arrh_dry(S,H,k,T) | ||
exponent = -(H)./(k.*T); | ||
sig = (10^S).*exp(exponent); | ||
end | ||
|
||
function sig = arrh_wet(S,H,k,T,w,a,r) | ||
exponent = -(H-a.*(w.^(1/3)))./(k.*T); | ||
sig = (10^S).*(w.^r).*exp(exponent); | ||
end |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,88 @@ | ||
function [ VBR ] = poe2010( VBR ) | ||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | ||
% | ||
% [ VBR ] = poe2010( VBR ) | ||
% | ||
% calculates the electrical conductivity in single crystal San Carlos | ||
% olivine (Fo90 ) at 8 GPa were determined by complex impedance spectroscopy. | ||
% | ||
% Parameters: | ||
% ---------- | ||
% VBR the VBR structure | ||
% | ||
% Output: | ||
% ------ | ||
% VBR the VBR structure, with VBR.out.electric.poe2010_ol structure | ||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | ||
|
||
% read in eletric parameters | ||
ele = VBR.in.electric.poe2010_ol; | ||
T = VBR.in.SV.T; % K (Temmperature) | ||
Ch2o = VBR.in.SV.Ch2o; % ppm (water content) | ||
P = VBR.in.SV.P; % GPa (Pressure) | ||
|
||
% hydrous 100 axis | ||
S_H100 = ele.S_H100; % S/m | ||
Va_H100 = ele.Va_H100; % cc/mol | ||
H_H100 = ele.H_H100 + Va_H100.*P; % eV | ||
a_H100 = ele.a_H100; % unitless | ||
r = ele.r_H100; % unitless | ||
k = ele.k_H100; % eV/(mol*K) | ||
|
||
% hydrous 010 axis | ||
S_H010 = ele.S_H010; % S/m | ||
Va_H010 = ele.Va_H010; % cc/mol | ||
H_H010 = ele.H_H010 + Va_H010.*P; % eV | ||
a_H010 = ele.a_H010; % unitless | ||
|
||
% hydrous 001 axis | ||
S_H001 = ele.S_H001; % S/m | ||
Va_H001 = ele.Va_H001; % cc/mol | ||
H_H001 = ele.H_H001 + Va_H001.*P; % eV | ||
a_H001 = ele.a_H001; % unitless | ||
|
||
% Anhydrous params | ||
S_A100 = ele.S_A100; % S/m | ||
Va_A100 = ele.Va_A100; % cc/mol | ||
H_A100 = ele.H_A100 + Va_A100.*P; % eV | ||
|
||
S_A010 = ele.S_A010; % S/m | ||
Va_A010 = ele.Va_A010; % cc/mol | ||
H_A010 = ele.H_A010 + Va_A010.*P; % eV | ||
|
||
S_A001 = ele.S_A001; % S/m | ||
Va_A001 = ele.Va_A001; % cc/mol | ||
H_A001 = ele.H_A001 + Va_A001.*P; % eV | ||
|
||
% calculate hydrous arrhenius relation for each crystal axis | ||
esig_H100 = arrh_wet(S_H100,H_H100,k,T,Ch2o,a_H100,r); | ||
esig_H010 = arrh_wet(S_H010,H_H010,k,T,Ch2o,a_H010,r); | ||
esig_H001 = arrh_wet(S_H001,H_H001,k,T,Ch2o,a_H001,r); | ||
esig_H = geomean(esig_H001,esig_H010,esig_H100); | ||
|
||
% calculate anhydrous arrhenius relation for each crystal axis | ||
esig_A100 = arrh_dry(S_A100,H_A100,k,T); | ||
esig_A010 = arrh_dry(S_A010,H_A010,k,T); | ||
esig_A001 = arrh_dry(S_A001,H_A001,k,T); | ||
esig_A = geomean(esig_A001,esig_A010,esig_A100); | ||
|
||
|
||
% summation of conduction mechanisms | ||
esig = esig_H + esig_A; % S/m | ||
|
||
% store in VBR structure | ||
poe2010_ol.esig_H = esig_H; | ||
poe2010_ol.esig_A = esig_A; | ||
poe2010_ol.esig = esig; | ||
VBR.out.electric.poe2010_ol = poe2010_ol; | ||
end | ||
|
||
function sig = arrh_dry(S,H,k,T) | ||
exponent = -(H)./(k.*T); | ||
sig = (10^S).*exp(exponent); | ||
end | ||
|
||
function sig = arrh_wet(S,H,k,T,w,a,r) | ||
exponent = -(H-a.*(w.^(1/3)))./(k.*T); | ||
sig = (10^S).*(w.^r).*exp(exponent); | ||
end |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,70 @@ | ||
function [ VBR ] = sun2019( VBR ) | ||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | ||
% | ||
% [ VBR ] = sun2019( VBR ) | ||
% | ||
% Hydrogen-Deuterium Interdiffusion on single crystal San Carlos Olivine | ||
% | ||
% Parameters: | ||
% ---------- | ||
% VBR the VBR structure | ||
% | ||
% Output: | ||
% ------ | ||
% VBR the VBR structure, with VBR.out.electric.sun2019_ol structure | ||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | ||
|
||
% read in eletric parameters | ||
ele = VBR.in.electric.sun2019_ol; | ||
T = VBR.in.SV.T; % K (Temperature) | ||
Ch2o = VBR.in.SV.Ch2o; % ppm (water content) | ||
P = VBR.in.SV.P; % Pa (Pressure) | ||
|
||
k = ele.k_i; % eV/(mol*K) | ||
% Ionic Conduction | ||
Si = ele.S_i; % S/m | ||
Va_i = ele.Va_i; % cc/mol | ||
Hi = ele.H_i + Va_i.*P; % eV | ||
|
||
% Hopping Conduction | ||
Sh = ele.S_h; % S/m | ||
Va_h = ele.Va_h; % cc/mol | ||
Hh = ele.H_h + Va_h.*P; % eV | ||
|
||
% Hydrogen Diffusion | ||
Sd = ele.S; % (m^2)/s | ||
Va = ele.Va; % cc/mol | ||
Hd = ele.H + Va.*P; % kJ/mol | ||
R = ele.R; % kJ/(mol*K) | ||
a = ele.a; % unitless | ||
r = ele.r; % unitless | ||
|
||
k_B = ele.k_B; % J/K (Nernst-Eistien constant) | ||
q = ele.q; % C (Elementary charge) | ||
|
||
% calculate arrhenius relation for each conduction mechanism | ||
esig_i = arrh_dry(Si,Hi,k,T); | ||
esig_h = arrh_dry(Sh,Hh,k,T); | ||
D = arrh_wet(Sd,Hd,R,T,Ch2o,a,r); | ||
esig_p = (D.*Ch2o.*(q^2))./(k_B*T); | ||
|
||
% summation of conduction mechanisms | ||
esig = esig_i + esig_h + esig_p; % S/m | ||
|
||
% store in VBR structure | ||
sun2019_ol.esig_i = esig_i; | ||
sun2019_ol.esig_h = esig_h; | ||
sun2019_ol.esig_p = esig_p; | ||
sun2019_ol.esig = esig; | ||
VBR.out.electric.sun2019_ol = sun2019_ol; | ||
end | ||
|
||
function sig = arrh_dry(S,H,k,T) | ||
exponent = -(H)./(k.*T); | ||
sig = (10^S).*exp(exponent); | ||
end | ||
|
||
function sig = arrh_wet(S,H,k,T,w,a,r) | ||
exponent = -(H-a.*(w.^(1/3)))./(k.*T); | ||
sig = (10^S).*(w.^r).*exp(exponent); | ||
end |
Oops, something went wrong.