The SVM was tested upon three separate algorithms.
- Linear
- Polynomial
- RBF
- Sigmoid
Different SVM kernels for IRIS dataset - Source: scikit-learn docs
Precision | Recall | F1-Score | Support | |
---|---|---|---|---|
0.0 | 1.0 | 1.0 | 1.0 | 12 |
1.0 | 1.0 | 1.0 | 1.0 | 11 |
2.0 | 1.0 | 1.0 | 1.0 | 18 |
Accuracy | 1.0 | 41 | ||
Macro Avg | 1.0 | 1.0 | 1.0 | 41 |
Weighted Avg | 1.0 | 1.0 | 1.0 | 41 |
Precision | Recall | F1-Score | Support | |
---|---|---|---|---|
0.0 | 1.0 | 1.0 | 1.0 | 12 |
1.0 | 1.0 | 0.55 | 0.71 | 11 |
2.0 | 0.78 | 1.0 | 0.88 | 18 |
Accuracy | 0.88 | 41 | ||
Macro Avg | 0.93 | 0.85 | 0.86 | 41 |
Weighted Avg | 0.90 | 0.88 | 0.87 | 41 |
Precision | Recall | F1-Score | Support | |
---|---|---|---|---|
0.0 | 1.0 | 1.0 | 1.0 | 12 |
1.0 | 1.0 | 1.0 | 1.0 | 11 |
2.0 | 1.0 | 1.0 | 1.0 | 18 |
Accuracy | 1.0 | 41 | ||
Macro Avg | 1.0 | 1.0 | 1.0 | 41 |
Weighted Avg | 1.0 | 1.0 | 1.0 | 41 |
Precision | Recall | F1-Score | Support | |
---|---|---|---|---|
0.0 | 1.0 | 1.0 | 1.0 | 12 |
1.0 | 1.0 | 0.45 | 0.62 | 11 |
2.0 | 0.78 | 0.78 | 0.88 | 18 |
3.0 | 0.0 | 0.0 | 0.0 | 0 |
Accuracy | 0.76 | 41 | ||
Macro Avg | 0.75 | 0.56 | 0.62 | 41 |
Weighted Avg | 1.00 | 0.76 | 0.84 | 41 |