Skip to content

Vision finetuning

Compare
Choose a tag to compare
@danielhanchen danielhanchen released this 21 Nov 17:55
· 490 commits to main since this release
  • We support Llama 3.2 Vision 11B, 90B; Pixtral; Qwen2VL 2B, 7B, 72B; and any Llava variants like Llava NeXT!
  • We support 16bit LoRA or 4bit QLoRA. Both are accelerated and use much less memory!
  • Llama 3.2 Vision finetuning - Radiography use case. Free Colab Kaggle Notebook
  • Qwen 2 VL Vision finetuning - Maths OCR to LaTeX. Free Colab Kaggle Notebook
  • Pixtral 12B Vision finetuning - General QA datasets. Free Colab
  • Please run pip install --upgrade --no-cache-dir unsloth unsloth_zoo
from unsloth import FastVisionModel # NEW instead of FastLanguageModel
import torch

model, tokenizer = FastVisionModel.from_pretrained(
    "unsloth/Llama-3.2-11B-Vision-Instruct",
    load_in_4bit = True, # Use 4bit quantization to reduce memory usage. Can be False.
    use_gradient_checkpointing = "unsloth", # True or "unsloth" for long context
)

model = FastVisionModel.get_peft_model(
    model,
    finetune_vision_layers     = True, # False if not finetuning vision part
    finetune_language_layers   = True, # False if not finetuning language part
    finetune_attention_modules = True, # False if not finetuning attention layers
    finetune_mlp_modules       = True, # False if not finetuning MLP layers

    r = 16,           # The larger, the higher the accuracy, but might overfit
    lora_alpha = 16,  # Recommended alpha == r at least
    lora_dropout = 0,
    bias = "none",
    random_state = 3407,
    use_rslora = False,  # We support rank stabilized LoRA
    loftq_config = None, # And LoftQ
    # target_modules = "all-linear", # Optional now! Can specify a list if needed
)

from datasets import load_dataset
dataset = load_dataset("unsloth/llava-instruct-mix-vsft-mini", split = "train")
from unsloth import is_bf16_supported
from unsloth.trainer import UnslothVisionDataCollator
from trl import SFTTrainer, SFTConfig

FastVisionModel.for_training(model) # Enable for training!

trainer = SFTTrainer(
    model = model,
    tokenizer = tokenizer,
    data_collator = UnslothVisionDataCollator(model, tokenizer), # Must use!
    train_dataset = dataset,
    args = SFTConfig(
        per_device_train_batch_size = 1, # Reduce to 1 to make Pixtral fit!
        gradient_accumulation_steps = 4,
        warmup_steps = 5,
        max_steps = 30,
        # num_train_epochs = 1, # Set this instead of max_steps for full training runs
        learning_rate = 2e-4,
        fp16 = not is_bf16_supported(),
        bf16 = is_bf16_supported(),
        logging_steps = 1,
        optim = "adamw_8bit",
        weight_decay = 0.01,
        lr_scheduler_type = "linear",
        seed = 3407,
        output_dir = "outputs",
        report_to = "none",     # For Weights and Biases

        # You MUST put the below items for vision finetuning:
        remove_unused_columns = False,
        dataset_text_field = "",
        dataset_kwargs = {"skip_prepare_dataset": True},
        dataset_num_proc = 4,
        max_seq_length = 2048,
    ),
)
trainer_stats = trainer.train()

After finetuning, you can also do inference:

FastVisionModel.for_inference(model) # Enable for inference!

image = dataset[2]["images"][0]
instruction = "Is there something interesting about this image?"

messages = [
    {"role": "user", "content": [
        {"type": "image"},
        {"type": "text", "text": instruction}
    ]}
]
input_text = tokenizer.apply_chat_template(messages, add_generation_prompt = True)
inputs = tokenizer(
    image,
    input_text,
    add_special_tokens = False,
    return_tensors = "pt",
).to("cuda")

from transformers import TextStreamer
text_streamer = TextStreamer(tokenizer, skip_prompt = True)
_ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 128,
                   use_cache = True, temperature = 1.5, min_p = 0.1)

We also support merging QLoRA / LoRA directly into 16bit weights for serving:

# Select ONLY 1 to save! (Both not needed!)

# Save locally to 16bit
if False: model.save_pretrained_merged("unsloth_finetune", tokenizer,)

# To export and save to your Hugging Face account
if False: model.push_to_hub_merged("YOUR_USERNAME/unsloth_finetune", tokenizer, token = "PUT_HERE")

What's Changed

New Contributors

Full Changelog: September-2024...November-2024