-
Notifications
You must be signed in to change notification settings - Fork 894
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Feat/time net model #2538
base: master
Are you sure you want to change the base?
Feat/time net model #2538
Changes from 11 commits
3cf2e54
9bbd1c9
3edce3a
34b55b9
d2f6d68
5d57e23
c4c2d6f
409c56f
63b1358
d9a0299
3e5b913
c985d54
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change | ||||
---|---|---|---|---|---|---|
@@ -0,0 +1,237 @@ | ||||||
""" | ||||||
TimesNet Model | ||||||
------- | ||||||
The implementation is built upon the Time Series Library's TimesNet model | ||||||
<https://github.com/thuml/Time-Series-Library/blob/main/layers/Embed.py> | ||||||
|
||||||
------- | ||||||
MIT License | ||||||
|
||||||
Copyright (c) 2021 THUML @ Tsinghua University | ||||||
|
||||||
Permission is hereby granted, free of charge, to any person obtaining a copy | ||||||
of this software and associated documentation files (the "Software"), to deal | ||||||
in the Software without restriction, including without limitation the rights | ||||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | ||||||
copies of the Software, and to permit persons to whom the Software is | ||||||
furnished to do so, subject to the following conditions: | ||||||
|
||||||
The above copyright notice and this permission notice shall be included in all | ||||||
copies or substantial portions of the Software. | ||||||
|
||||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | ||||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | ||||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | ||||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||||||
SOFTWARE. | ||||||
""" | ||||||
|
||||||
import math | ||||||
|
||||||
import torch | ||||||
import torch.nn as nn | ||||||
|
||||||
from darts.utils.torch import MonteCarloDropout | ||||||
|
||||||
|
||||||
class PositionalEmbedding(nn.Module): | ||||||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. the |
||||||
def __init__(self, d_model, max_len=5000): | ||||||
super().__init__() | ||||||
# Compute the positional encodings once in log space. | ||||||
pe = torch.zeros(max_len, d_model).float() | ||||||
pe.require_grad = False | ||||||
|
||||||
position = torch.arange(0, max_len).float().unsqueeze(1) | ||||||
div_term = ( | ||||||
torch.arange(0, d_model, 2).float() * -(math.log(10000.0) / d_model) | ||||||
).exp() | ||||||
|
||||||
pe[:, 0::2] = torch.sin(position * div_term) | ||||||
pe[:, 1::2] = torch.cos(position * div_term) | ||||||
|
||||||
pe = pe.unsqueeze(0) | ||||||
self.register_buffer("pe", pe) | ||||||
|
||||||
def forward(self, x): | ||||||
return self.pe[:, : x.size(1)] | ||||||
|
||||||
|
||||||
class TokenEmbedding(nn.Module): | ||||||
def __init__(self, c_in, d_model): | ||||||
super().__init__() | ||||||
padding = 1 if torch.__version__ >= "1.5.0" else 2 | ||||||
self.tokenConv = nn.Conv1d( | ||||||
in_channels=c_in, | ||||||
out_channels=d_model, | ||||||
kernel_size=3, | ||||||
padding=padding, | ||||||
padding_mode="circular", | ||||||
bias=False, | ||||||
) | ||||||
for m in self.modules(): | ||||||
if isinstance(m, nn.Conv1d): | ||||||
nn.init.kaiming_normal_( | ||||||
m.weight, mode="fan_in", nonlinearity="leaky_relu" | ||||||
) | ||||||
|
||||||
def forward(self, x): | ||||||
x = self.tokenConv(x.permute(0, 2, 1)).transpose(1, 2) | ||||||
return x | ||||||
|
||||||
|
||||||
class FixedEmbedding(nn.Module): | ||||||
def __init__(self, c_in, d_model): | ||||||
super().__init__() | ||||||
|
||||||
w = torch.zeros(c_in, d_model).float() | ||||||
w.require_grad = False | ||||||
|
||||||
position = torch.arange(0, c_in).float().unsqueeze(1) | ||||||
div_term = ( | ||||||
torch.arange(0, d_model, 2).float() * -(math.log(10000.0) / d_model) | ||||||
).exp() | ||||||
|
||||||
w[:, 0::2] = torch.sin(position * div_term) | ||||||
w[:, 1::2] = torch.cos(position * div_term) | ||||||
Comment on lines
+88
to
+97
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. this code snippet can also be found in |
||||||
|
||||||
self.emb = nn.Embedding(c_in, d_model) | ||||||
self.emb.weight = nn.Parameter(w, requires_grad=False) | ||||||
|
||||||
def forward(self, x): | ||||||
return self.emb(x).detach() | ||||||
|
||||||
|
||||||
class TemporalEmbedding(nn.Module): | ||||||
def __init__(self, d_model, embed_type="fixed", freq="h"): | ||||||
super().__init__() | ||||||
|
||||||
minute_size = 4 | ||||||
hour_size = 24 | ||||||
weekday_size = 7 | ||||||
day_size = 32 | ||||||
month_size = 13 | ||||||
|
||||||
Embed = FixedEmbedding if embed_type == "fixed" else nn.Embedding | ||||||
if freq == "t": | ||||||
self.minute_embed = Embed(minute_size, d_model) | ||||||
self.hour_embed = Embed(hour_size, d_model) | ||||||
self.weekday_embed = Embed(weekday_size, d_model) | ||||||
self.day_embed = Embed(day_size, d_model) | ||||||
self.month_embed = Embed(month_size, d_model) | ||||||
|
||||||
def forward(self, x): | ||||||
x = x.long() | ||||||
minute_x = ( | ||||||
self.minute_embed(x[:, :, 4]) if hasattr(self, "minute_embed") else 0.0 | ||||||
) | ||||||
hour_x = self.hour_embed(x[:, :, 3]) | ||||||
weekday_x = self.weekday_embed(x[:, :, 2]) | ||||||
day_x = self.day_embed(x[:, :, 1]) | ||||||
month_x = self.month_embed(x[:, :, 0]) | ||||||
|
||||||
return hour_x + weekday_x + day_x + month_x + minute_x | ||||||
|
||||||
|
||||||
class TimeFeatureEmbedding(nn.Module): | ||||||
def __init__(self, d_model, embed_type="timeF", freq="h"): | ||||||
super().__init__() | ||||||
|
||||||
freq_map = {"h": 4, "t": 5, "s": 6, "m": 1, "a": 1, "w": 2, "d": 3, "b": 3} | ||||||
d_inp = freq_map[freq] | ||||||
self.embed = nn.Linear(d_inp, d_model, bias=False) | ||||||
|
||||||
def forward(self, x): | ||||||
return self.embed(x) | ||||||
|
||||||
|
||||||
class DataEmbedding(nn.Module): | ||||||
def __init__(self, c_in, d_model, embed_type="fixed", freq="h", dropout=0.1): | ||||||
super().__init__() | ||||||
|
||||||
self.value_embedding = TokenEmbedding(c_in=c_in, d_model=d_model) | ||||||
self.position_embedding = PositionalEmbedding(d_model=d_model) | ||||||
self.temporal_embedding = ( | ||||||
TemporalEmbedding(d_model=d_model, embed_type=embed_type, freq=freq) | ||||||
if embed_type != "timeF" | ||||||
else TimeFeatureEmbedding(d_model=d_model, embed_type=embed_type, freq=freq) | ||||||
) | ||||||
self.dropout = MonteCarloDropout(p=dropout) | ||||||
|
||||||
def forward(self, x, x_mark): | ||||||
if x_mark is None: | ||||||
x = self.value_embedding(x) + self.position_embedding(x) | ||||||
else: | ||||||
x = ( | ||||||
self.value_embedding(x) | ||||||
+ self.temporal_embedding(x_mark) | ||||||
+ self.position_embedding(x) | ||||||
) | ||||||
return self.dropout(x) | ||||||
|
||||||
|
||||||
class DataEmbedding_inverted(nn.Module): | ||||||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
Suggested change
|
||||||
def __init__(self, c_in, d_model, embed_type="fixed", freq="h", dropout=0.1): | ||||||
super().__init__() | ||||||
self.value_embedding = nn.Linear(c_in, d_model) | ||||||
self.dropout = MonteCarloDropout(p=dropout) | ||||||
|
||||||
def forward(self, x, x_mark): | ||||||
x = x.permute(0, 2, 1) | ||||||
# x: [Batch Variate Time] | ||||||
if x_mark is None: | ||||||
x = self.value_embedding(x) | ||||||
else: | ||||||
x = self.value_embedding(torch.cat([x, x_mark.permute(0, 2, 1)], 1)) | ||||||
# x: [Batch Variate d_model] | ||||||
return self.dropout(x) | ||||||
|
||||||
|
||||||
class DataEmbedding_wo_pos(nn.Module): | ||||||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. The logic is so similar to |
||||||
def __init__(self, c_in, d_model, embed_type="fixed", freq="h", dropout=0.1): | ||||||
super().__init__() | ||||||
|
||||||
self.value_embedding = TokenEmbedding(c_in=c_in, d_model=d_model) | ||||||
self.position_embedding = PositionalEmbedding(d_model=d_model) | ||||||
self.temporal_embedding = ( | ||||||
TemporalEmbedding(d_model=d_model, embed_type=embed_type, freq=freq) | ||||||
if embed_type != "timeF" | ||||||
else TimeFeatureEmbedding(d_model=d_model, embed_type=embed_type, freq=freq) | ||||||
) | ||||||
self.dropout = MonteCarloDropout(p=dropout) | ||||||
|
||||||
def forward(self, x, x_mark): | ||||||
if x_mark is None: | ||||||
x = self.value_embedding(x) | ||||||
else: | ||||||
x = self.value_embedding(x) + self.temporal_embedding(x_mark) | ||||||
return self.dropout(x) | ||||||
|
||||||
|
||||||
class PatchEmbedding(nn.Module): | ||||||
def __init__(self, d_model, patch_len, stride, padding, dropout): | ||||||
super().__init__() | ||||||
# Patching | ||||||
self.patch_len = patch_len | ||||||
self.stride = stride | ||||||
self.padding_patch_layer = nn.ReplicationPad1d((0, padding)) | ||||||
|
||||||
# Backbone, Input encoding: projection of feature vectors onto a d-dim vector space | ||||||
self.value_embedding = nn.Linear(patch_len, d_model, bias=False) | ||||||
|
||||||
# Positional embedding | ||||||
self.position_embedding = PositionalEmbedding(d_model) | ||||||
|
||||||
# Residual dropout | ||||||
self.dropout = MonteCarloDropout(p=dropout) | ||||||
|
||||||
def forward(self, x): | ||||||
# do patching | ||||||
n_vars = x.shape[1] | ||||||
x = self.padding_patch_layer(x) | ||||||
x = x.unfold(dimension=-1, size=self.patch_len, step=self.stride) | ||||||
x = torch.reshape(x, (x.shape[0] * x.shape[1], x.shape[2], x.shape[3])) | ||||||
# Input encoding | ||||||
x = self.value_embedding(x) + self.position_embedding(x) | ||||||
return self.dropout(x), n_vars |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Incorrect link