UnitGen 是一个用于生成微调代码的数据框架 —— 直接从你的代码库中生成微调数据:代码补全、测试生成、文档生成等。
Docs: https://gen.unitmesh.cc/
Thanks to OpenBayes for providing computing resources.
Finetune Model Examples:
name | model download (HuggingFace) | finetune Notebook | model download (OpenBayes) |
---|---|---|---|
DeepSeek 6.7B | unit-mesh/autodev-coder | finetune.ipynb | AutoDev Coder |
Language support by Chapi
- supported:
- Java
- Kotlin
- doing:
- TypeScript/JavaScript
- Rust
- future:
- Go
- Python
- C/C++
- C#
- Scala
Features:
- Code context strategy: Related code completion, Similar Code Completion
- Instruction Builder type: inline, block, after block, documentation, test gen
- Code quality filter and pipeline. Code smell, test smell, estimation and more.
Layered Architecture
Workflow
- Unique prompt. Integrated use of fine-tuning, evaluation, and tooling.
- Code quality pipeline. With estimate with code complex, bad smell, test bad smell, and more rules.
- Extendable customize quality thresholds. Custom rules, custom thresholds, custom quality type or more.
Keep the same prompt: AutoDev <-> UnitGen <-> UnitEval
AutoDev prompt template example:
Write unit test for following code.
${context.coc}
${context.framework}
${context.related_model}
```${context.language}
${context.selection}
```
Unit Picker prompt should keep the same structure as the AutoDev prompt. Prompt example:
Instruction(
instruction = "Complete ${it.language} code, return rest code, no explaining",
output = it.output,
input = """
|```${it.language}
|${it.relatedCode}
|```
|
|Code:
|```${it.language}
|${it.beforeCursor}
|```""".trimMargin()
)
UnitGen prompt should keep the same structure as the AutoDev prompt. Prompt example:
Complete ${language} code, return rest code, no explaining
```${language}
${relatedCode}
```
Code:
```${language}
${beforeCursor}
```
Optional quality type:
enum class CodeQualityType {
BadSmell,
TestBadSmell,
JavaController,
JavaRepository,
JavaService,
}
Custom thresholds' config:
data class BsThresholds(
val bsLongParasLength: Int = 5,
val bsIfSwitchLength: Int = 8,
val bsLargeLength: Int = 20,
val bsMethodLength: Int = 30,
val bsIfLinesLength: Int = 3,
)
Custom rules:
val apis = apiAnalyser.toContainerServices()
val ruleset = RuleSet(
RuleType.SQL_SMELL,
"normal",
UnknownColumnSizeRule(),
LimitTableNameLengthRule()
// more rules
)
val issues = WebApiRuleVisitor(apis).visitor(listOf(ruleset))
// if issues are not empty, then the code has bad smell
for examples, see: examples folder
see in config-examples
download the latest version from GitHub Release
- config project by
processor.yml
- run picker:
java -jar unit-gen.jar
see in config-example
1.add dependency
dependencies {
implementation("cc.unitmesh:unit-picker:0.1.5")
implementation("cc.unitmesh:code-quality:0.1.5")
}
2.config the unit-gen.yml
file and connection.yml
3.write code
public class App {
public static void main(String[] args) {
List<InstructionType> builderTypes = new ArrayList<>();
builderTypes.add(InstructionType.RELATED_CODE_COMPLETION);
List<CodeQualityType> codeQualityTypes = new ArrayList<>();
codeQualityTypes.add(CodeQualityType.BadSmell);
codeQualityTypes.add(CodeQualityType.JavaService);
PickerOption pickerOption = new PickerOption(
"https://github.com/unit-mesh/unit-gen-testing", "master", "java",
".", builderTypes, codeQualityTypes, new BuilderConfig()
);
SimpleCodePicker simpleCodePicker = new SimpleCodePicker(pickerOption);
List<Instruction> output = simpleCodePicker.blockingExecute();
// handle output in here
}
}
- abstract syntax tree: Chapi. Used features: multiple language to same data structure.
- legacy system analysis: Coca. Inspired: Bad Smell, Test Bad Smell
- architecture governance tool: ArchGuard. Used features: Estimation, Rule Lint (API, SQL)
- code database CodeDB. Used features: Code analysis pipeline
This code is distributed under the MPL 2.0 license. See LICENSE
in this directory.