-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'main' of github.com:uclahs-cds/public-R-NanoStringNorm …
…into danknight-r-check
- Loading branch information
Showing
10 changed files
with
266 additions
and
224 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,14 +1,16 @@ | ||
Package: NanoStringNorm | ||
Type: Package | ||
Title: Normalize NanoString miRNA and mRNA Data | ||
Version: 2.0.0 | ||
Date: 2023-03-21 | ||
Version: 3.0.0 | ||
Date: 2025-01-15 | ||
Authors@R: c( | ||
person(c("Daryl", "M."), "Waggott", role = "aut"), | ||
person("Paul", "Boutros", email = "[email protected]", role = "cre"), | ||
person("Dan", "Knight", role = "ctb")) | ||
Depends: R (>= 2.14.0), gdata (>= 2.8.2), XML (>= 3.98-1.5) | ||
Imports: methods | ||
Depends: | ||
R (>= 2.14.0) | ||
Imports: | ||
methods | ||
Suggests: googleVis (>= 0.2.14), lme4, RUnit (>= 0.4.26) | ||
Description: A set of tools for normalizing, diagnostics and visualization of NanoString nCounter data. | ||
License: GPL-2 | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,84 @@ | ||
read.csv.RCC <- function(path, sample.id.row = 'File.Name') { | ||
if (!file.exists(path)) { | ||
stop(paste('File not found:', path)) ; | ||
} | ||
|
||
prep.rcc <- function(path) { | ||
data <- read.csv( | ||
path, | ||
header = FALSE, | ||
strip.white = TRUE | ||
); | ||
data <- data[!sapply(data, function(x) all(is.na(x)))]; | ||
|
||
data.start.index <- min(which(data[, 1] == 'Reporter Counts')); | ||
header <- data[1:(data.start.index - 1), ]; | ||
data <- data[data.start.index:nrow(data), ]; | ||
|
||
return(list( | ||
header = header, | ||
x = data | ||
)); | ||
} | ||
rcc <- prep.rcc(path); | ||
|
||
if (is.null(rcc$header)) { | ||
stop('There appears to be a problem with the RCC CSV file. No header information found.'); | ||
} | ||
|
||
rcc$header <- rcc$header[is.na(rcc$header[1]) | (rcc$header[1] != ''), ]; | ||
rownames(rcc$header) <- rcc$header[, 1]; | ||
rcc$header <- rcc$header[, -1]; | ||
|
||
rownames(rcc$header) <- gsub(' $', '', rownames(rcc$header)); | ||
rownames(rcc$header) <- gsub(' ', '.', rownames(rcc$header)); | ||
rownames(rcc$header) <- tolower(rownames(rcc$header)); | ||
|
||
if ('id' %in% rownames(rcc$header)) { | ||
rownames(rcc$header)[rownames(rcc$header) == 'id'] <- 'sample.id'; | ||
} | ||
|
||
if (!all(c('file.name', 'sample.id', 'binding.density') %in% rownames(rcc$header))) { | ||
stop('There appears to be a problem with the RCC CSV file. Rownames in header are missing "File name", "Sample id", "Binding density"'); | ||
} | ||
|
||
rcc$header <- rcc$header[!rownames(rcc$header) %in% c('file.attributes', 'lane.attributes'), -c(1,2)]; | ||
|
||
sample.ids <- rcc$header[rownames(rcc$header) %in% tolower(sample.id.row),]; | ||
sample.ids <- gsub(' ', '.', sample.ids); | ||
sample.ids <- gsub('^([0-9])', 'X\\1', sample.ids); | ||
colnames(rcc$header) <- sample.ids; | ||
|
||
if (is.null(rcc$x)) { | ||
stop('There appears to be a problem with the RCC CSV file. Likely couldnt find the count specifically "Code Class" in header information.'); | ||
} | ||
|
||
colnames(rcc$x) <- rcc$x[2, ]; | ||
rcc$x <- rcc$x[-c(1:2), 1:(3 + length(sample.ids))]; | ||
|
||
rows.with.missing.anno <- (rcc$x[, 1] == '' | rcc$x[, 2] == ''); | ||
if (any(rows.with.missing.anno)) { | ||
rcc$x <- rcc$x[!rows.with.missing.anno,]; | ||
cat(paste('The following row(s)', paste(which(rows.with.missing.anno), collapse = ', '), 'have been dropped due to missing annotation.\n\t You may want to double check the excel file.\n\n')); | ||
} | ||
|
||
colnames(rcc$x) <- gsub(' ', '.', colnames(rcc$x)); | ||
colnames(rcc$x) <- c(colnames(rcc$x)[1:3], sample.ids); | ||
|
||
cat(paste('There were', length(sample.ids), 'samples imported. \nNote that spaces in sample names will be replaced by dots. \n')); | ||
|
||
if (length(sample.ids) > 5) { | ||
cat('The first and last 3 sample names found in the dataset are:\n'); | ||
cat(paste(c(sample.ids[1:3], rev(sample.ids)[1:3]))); | ||
} | ||
else { | ||
cat('The sample names found in the dataset are:\n'); | ||
cat(paste(sample.ids)); | ||
} | ||
|
||
cat(paste('\n\nThere were', nrow(rcc$x), 'genes imported with the following Code Class breakdown:')); | ||
print(table(rcc$x[, 'Code.Class'])); | ||
|
||
class(rcc) <- 'NanoString'; | ||
return(rcc); | ||
} |
Oops, something went wrong.