-
Notifications
You must be signed in to change notification settings - Fork 40
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
fix: allow variable case for Doodson number formalisms (#361)
* feat: added property for Extended Doodson numbers * fix: use Love numbers for long-period tides when inferring (won't affect tilt factors) * docs: add form factor notebook for classifying regional tides
- Loading branch information
1 parent
c8f976e
commit 74ce25f
Showing
7 changed files
with
392 additions
and
19 deletions.
There are no files selected for viewing
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,340 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"attachments": {}, | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"Plot Tide Form Factor\n", | ||
"======================\n", | ||
"\n", | ||
"This ({nb-download}`notebook <Plot-Tide-Form-Factor.ipynb>`) demonstrates plotting tidal form factors for classifying tides\n", | ||
"\n", | ||
"- Daily tidal form factors for determining the dominant species of a region using the classifications from [Courtier (1938)](https://journals.lib.unb.ca/index.php/ihr/article/download/27428/1882520184). The dominant species classifications do have limitations as pointed out by [Amin (1986)](https://journals.lib.unb.ca/index.php/ihr/article/download/23443/27218/0)\n", | ||
"- Monthly tidal form factors for semi-diurnal species from [Byun and Hart](https://doi.org/10.5194/os-16-965-2020)\n", | ||
"\n", | ||
"OTIS format tidal solutions provided by Oregon State University and ESR \n", | ||
"- [http://volkov.oce.orst.edu/tides/region.html](http://volkov.oce.orst.edu/tides/region.html) \n", | ||
"- [https://www.esr.org/research/polar-tide-models/list-of-polar-tide-models/](https://www.esr.org/research/polar-tide-models/list-of-polar-tide-models/)\n", | ||
"- [ftp://ftp.esr.org/pub/datasets/tmd/](ftp://ftp.esr.org/pub/datasets/tmd/) \n", | ||
"\n", | ||
"Global Tide Model (GOT) solutions provided by Richard Ray at GSFC \n", | ||
"- [https://earth.gsfc.nasa.gov/geo/data/ocean-tide-models](https://earth.gsfc.nasa.gov/geo/data/ocean-tide-models)\n", | ||
"\n", | ||
"Finite Element Solution (FES) provided by AVISO \n", | ||
"- [https://www.aviso.altimetry.fr/en/data/products/auxiliary-products/global-tide-fes.html](https://www.aviso.altimetry.fr/en/data/products/auxiliary-products/global-tide-fes.html)\n", | ||
" \n", | ||
"## Python Dependencies\n", | ||
" - [numpy: Scientific Computing Tools For Python](https://www.numpy.org) \n", | ||
" - [scipy: Scientific Tools for Python](https://www.scipy.org/) \n", | ||
" - [pyproj: Python interface to PROJ library](https://pypi.org/project/pyproj/) \n", | ||
" - [netCDF4: Python interface to the netCDF C library](https://unidata.github.io/netcdf4-python/) \n", | ||
" - [matplotlib: Python 2D plotting library](http://matplotlib.org/) \n", | ||
" - [cartopy: Python package designed for geospatial data processing](https://scitools.org.uk/cartopy/docs/latest/) \n", | ||
"\n", | ||
"## Program Dependencies\n", | ||
"\n", | ||
"- `crs.py`: Coordinate Reference System (CRS) routines \n", | ||
"- `io.model.py`: retrieves tide model parameters for named tide models \n", | ||
"- `io.OTIS.py`: extract tidal harmonic constants from OTIS tide models \n", | ||
"- `io.ATLAS.py`: extract tidal harmonic constants from ATLAS netcdf models \n", | ||
"- `io.GOT.py`: extract tidal harmonic constants from GOT tide models \n", | ||
"- `io.FES.py`: extract tidal harmonic constants from FES tide models \n", | ||
"\n", | ||
"This notebook uses Jupyter widgets to set parameters for calculating the tidal maps. " | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Load modules" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import numpy as np\n", | ||
"import matplotlib\n", | ||
"matplotlib.rcParams['axes.linewidth'] = 2.0\n", | ||
"import matplotlib.pyplot as plt\n", | ||
"import matplotlib.colors as colors\n", | ||
"import cartopy.crs as ccrs\n", | ||
"import ipywidgets\n", | ||
"\n", | ||
"# import tide programs\n", | ||
"import pyTMD.io\n", | ||
"import pyTMD.tools\n", | ||
"\n", | ||
"# autoreload\n", | ||
"%load_ext autoreload\n", | ||
"%autoreload 2" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Set parameters for program\n", | ||
"\n", | ||
"- Model directory \n", | ||
"- Tide model " | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# available model list\n", | ||
"model_list = sorted(pyTMD.io.model.ocean_elevation())\n", | ||
"# display widgets for setting directory and model\n", | ||
"TMDwidgets = pyTMD.tools.widgets()\n", | ||
"TMDwidgets.model.options = model_list\n", | ||
"TMDwidgets.model.value = 'GOT4.10'\n", | ||
"TMDwidgets.VBox([\n", | ||
" TMDwidgets.directory,\n", | ||
" TMDwidgets.model,\n", | ||
" TMDwidgets.compress\n", | ||
"])" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Setup tide model parameters" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# get model parameters\n", | ||
"model = pyTMD.io.model(TMDwidgets.directory.value,\n", | ||
" compressed=TMDwidgets.compress.value\n", | ||
" ).elevation(TMDwidgets.model.value)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Setup coordinates for calculating tides" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# create a global image\n", | ||
"xlimits = [-180,180]\n", | ||
"ylimits = [-90, 90]\n", | ||
"spacing = [0.25, 0.25]\n", | ||
"# x and y coordinates\n", | ||
"x = np.arange(xlimits[0],xlimits[1]+spacing[0],spacing[0])\n", | ||
"y = np.arange(ylimits[0],ylimits[1]+spacing[1],spacing[1])\n", | ||
"xgrid,ygrid = np.meshgrid(x,y)\n", | ||
"# x and y dimensions\n", | ||
"nx = int((xlimits[1]-xlimits[0])/spacing[0])+1\n", | ||
"ny = int((ylimits[1]-ylimits[0])/spacing[1])+1\n", | ||
"# flatten latitude and longitude to arrays\n", | ||
"lon,lat = xgrid.flatten(), ygrid.flatten()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Calculate tidal amplitudes and phases" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# read tidal constants and interpolate to grid points\n", | ||
"if model.format in ('OTIS','ATLAS-compact','TMD3'):\n", | ||
" amp,ph,D,c = pyTMD.io.OTIS.extract_constants(lon, lat, model.grid_file,\n", | ||
" model.model_file, model.projection, type=model.type, crop=True,\n", | ||
" method='spline', grid=model.file_format)\n", | ||
"elif (model.format == 'ATLAS-netcdf'):\n", | ||
" amp,ph,D,c = pyTMD.io.ATLAS.extract_constants(lon, lat, model.grid_file,\n", | ||
" model.model_file, type=model.type, crop=True, method='spline',\n", | ||
" scale=model.scale, compressed=model.compressed)\n", | ||
"elif model.format in ('GOT-ascii', 'GOT-netcdf'):\n", | ||
" amp,ph,c = pyTMD.io.GOT.extract_constants(lon, lat, model.model_file,\n", | ||
" grid=model.file_format, crop=True, method='spline',\n", | ||
" scale=model.scale, compressed=model.compressed)\n", | ||
"elif (model.format == 'FES-netcdf'):\n", | ||
" amp,ph = pyTMD.io.FES.extract_constants(lon, lat, model.model_file,\n", | ||
" type=model.type, version=model.version, crop=True,\n", | ||
" method='spline', scale=model.scale, compressed=model.compressed)\n", | ||
" c = model.constituents" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Calculate tidal form factors\n", | ||
"\n", | ||
"Courtier form factor:\n", | ||
"Ratios between major diurnal tides and major semi-diurnal tides\n", | ||
"\n", | ||
"- F: < 0.25: Semi-diurnal\n", | ||
"- F: 0.25 - 1.5: Mixed predominantly semi-diurnal\n", | ||
"- F: 1.5 - 3.0: Mixed predominantly diurnal\n", | ||
"- F: > 3.0: Diurnal\n", | ||
"\n", | ||
"Byut-Hart form factor:\n", | ||
"Ratios between semi-diurnal tides for monthly tidal envelopes\n", | ||
"\n", | ||
"- E: < 0.8: Spring-Neap\n", | ||
"- E: 0.8 - 1.0: Mixed predominantly Spring-Neap\n", | ||
"- E: 1.0 - 1.15: Mixed predominantly Perigean-Apogean\n", | ||
"- E: > 2.0: Perigean-Apogean\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"TMDwidgets.form_factor = ipywidgets.Dropdown(\n", | ||
" options=['Courtier','Byun-Hart'],\n", | ||
" value='Courtier',\n", | ||
" description='Factor:',\n", | ||
" disabled=False,\n", | ||
" style=TMDwidgets.style,\n", | ||
")\n", | ||
"display(TMDwidgets.form_factor)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# find constituents for tidal form factors\n", | ||
"k1 = c.index('k1')\n", | ||
"o1 = c.index('o1')\n", | ||
"m2 = c.index('m2')\n", | ||
"s2 = c.index('s2')\n", | ||
"n2 = c.index('n2')\n", | ||
"# select form factor\n", | ||
"if TMDwidgets.form_factor.value == 'Courtier':\n", | ||
" # tidal form factor from Courtier\n", | ||
" factor = np.reshape((amp[:,k1] + amp[:,o1])/(amp[:,m2] + amp[:,s2]), (ny,nx))\n", | ||
" boundary = np.array([0.0, 0.25, 1.5, 3.0, 5.0])\n", | ||
" ticklabels = ['Semi-Diurnal', 'Mixed SD', 'Mixed D', 'Diurnal']\n", | ||
" longname = 'Tide Species Classification'\n", | ||
"elif TMDwidgets.form_factor.value == 'Byun-Hart':\n", | ||
" # semi-diurnal form factor from Byun and Hart\n", | ||
" factor = np.reshape((amp[:,m2] + amp[:,n2])/(amp[:,m2] + amp[:,s2]), (ny,nx))\n", | ||
" boundary = np.array([0.0, 0.8, 1.0, 1.15, 2.0])\n", | ||
" ticklabels = ['Spring-Neap', 'Mixed S-N', 'Mixed P-A', 'Perigean-Apogean']\n", | ||
" longname = 'Semi-Diurnal Classification'\n", | ||
"# calculate ticks for labels\n", | ||
"ticks = 0.5*(boundary[1:] + boundary[:-1])" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Create plot of tidal form factors" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# cartopy transform for Equirectangular Projection\n", | ||
"projection = ccrs.PlateCarree()\n", | ||
"# create figure axis\n", | ||
"fig, ax = plt.subplots(num=1, figsize=(5.5,3.5),\n", | ||
" subplot_kw=dict(projection=projection))\n", | ||
"# create boundary norm\n", | ||
"norm = colors.BoundaryNorm(boundary, ncolors=256)\n", | ||
"# plot tidal form factor\n", | ||
"extent = (xlimits[0],xlimits[1],ylimits[0],ylimits[1])\n", | ||
"im = ax.imshow(factor, interpolation='nearest',\n", | ||
" norm=norm, cmap='plasma', transform=projection,\n", | ||
" extent=extent, origin='lower')\n", | ||
"# add high resolution cartopy coastlines\n", | ||
"ax.coastlines('10m')\n", | ||
"\n", | ||
"# Add colorbar and adjust size\n", | ||
"# pad = distance from main plot axis\n", | ||
"# extend = add extension triangles to upper and lower bounds\n", | ||
"# options: neither, both, min, max\n", | ||
"# shrink = percent size of colorbar\n", | ||
"# aspect = lengthXwidth aspect of colorbar\n", | ||
"cbar = plt.colorbar(im, ax=ax, extend='neither',\n", | ||
" extendfrac=0.0375, orientation='horizontal', pad=0.025,\n", | ||
" shrink=0.90, aspect=22, drawedges=False)\n", | ||
"# rasterized colorbar to remove lines\n", | ||
"cbar.solids.set_rasterized(True)\n", | ||
"# Add label to the colorbar\n", | ||
"cbar.ax.set_title(longname, fontsize=13,\n", | ||
" rotation=0, y=-2.0, va='top')\n", | ||
"# Set the tick levels for the colorbar\n", | ||
"cbar.set_ticks(ticks=ticks, labels=ticklabels)\n", | ||
"\n", | ||
"# axis = equal\n", | ||
"ax.set_aspect('equal', adjustable='box')\n", | ||
"# set x and y limits\n", | ||
"ax.set_xlim(xlimits)\n", | ||
"ax.set_ylim(ylimits)\n", | ||
"\n", | ||
"# no ticks on the x and y axes\n", | ||
"ax.get_xaxis().set_ticks([])\n", | ||
"ax.get_yaxis().set_ticks([])\n", | ||
"# stronger linewidth on frame\n", | ||
"ax.spines['geo'].set_linewidth(2.0)\n", | ||
"ax.spines['geo'].set_capstyle('projecting')\n", | ||
"\n", | ||
"# adjust subplot within figure\n", | ||
"fig.subplots_adjust(left=0.02,right=0.98,bottom=0.05,top=0.98)\n", | ||
"# show the plot\n", | ||
"plt.show()" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "base", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.10.14" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 4 | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.