Paper link: arxiv.org/xxx
Abstract: There are some demo codes and test codes 一些python各个功能的示例, 以及测试代码
python == 3.5/3.6, pytorch >= 1.1.0, torchvison >= 0.6
pip install -r requirements.txt
We train/test our model on Datasets (e.g. KiTS19 )
We expect the directory structure to be the following:
path/to/kits19
data/
case_00xxx/
imaging.nii.gz
segmentation.nii.gz
case_00xxx/
...
Pre-processing
nii2pickle xxx
To train our model, run this scripts
python -m scripts.train --epochs 300 --data_path path/to/kits19
To evaluate our model, run this scripts
python -m scripts.test --data_path path/to/kits19 --resume xxx-model.pth
Please cite our paper if it helps you.
@proceeding{
title
}
This code is released under the Apache 2.0 license. Please see the LICENSE file for more information.
We actively welcome your pull requests! feel free!