Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add Wigner 3j and 6j functions #127

Merged
merged 1 commit into from
Oct 13, 2018
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
158 changes: 158 additions & 0 deletions maxwellbloch/angmom.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,158 @@
""" Angular momentum module. """

from __future__ import division
from scipy import floor, sqrt
from scipy.misc import factorial
from numpy import arange


def wigner_3j(j1, j2, j3, m1, m2, m3):
""" Compute the Wigner 3j factor using the Racah formula.

Args:
/ j1 j2 j3 \
| |
\ m1 m2 m3 /

"""

# Error checking
if ((2 * j1 != floor(2 * j1)) |
(2 * j2 != floor(2 * j2)) |
(2 * j3 != floor(2 * j3)) |
(2 * m1 != floor(2 * m1)) |
(2 * m2 != floor(2 * m2)) |
(2 * m3 != floor(2 * m3))):
raise ValueError('All arguments must be integers or half-integers.')

# Additional check if the sum of the second row equals zero
if (m1 + m2 + m3 != 0):
# print '3j-Symbol unphysical.'
return 0

if (j1 - m1 != floor(j1 - m1)):
# print '2*j1 and 2*m1 must have the same parity'
return 0

if (j2 - m2 != floor(j2 - m2)):
# print '2*j2 and 2*m2 must have the same parity'
return
0

if (j3 - m3 != floor(j3 - m3)):
# print '2*j3 and 2*m3 must have the same parity'
return 0

if (j3 > j1 + j2) | (j3 < abs(j1 - j2)):
# print 'j3 is out of bounds.'
return 0

if abs(m1) > j1:
# print 'm1 is out of bounds.'
return 0

if abs(m2) > j2:
# print 'm2 is out of bounds.'
return 0

if abs(m3) > j3:
# print 'm3 is out of bounds.'
return 0

t1 = j2 - m1 - j3
t2 = j1 + m2 - j3
t3 = j1 + j2 - j3
t4 = j1 - m1
t5 = j2 + m2

tmin = max(0, max(t1, t2))
tmax = min(t3, min(t4, t5))
tvec = arange(tmin, tmax + 1, 1)

wigner = 0

for t in tvec:
wigner += (-1)**t / (factorial(t) * factorial(t - t1) *
factorial(t - t2) * factorial(t3 - t) *
factorial(t4 - t) * factorial(t5 - t))

wigner *= ((-1)**(j1 - j2 - m3) * sqrt(factorial(j1 + j2 - j3) *
factorial(j1 - j2 + j3) * factorial(-j1 + j2 + j3) /
factorial(j1 + j2 + j3 + 1) * factorial(j1 + m1) * factorial(j1 - m1) *
factorial(j2 + m2) * factorial(j2 - m2) * factorial(j3 + m3) *
factorial(j3 - m3)))

return wigner


def wigner_6j(j1, j2, j3, J1, J2, J3):
""" Compute the Wigner 6j factor using the Racah formula.

Args:
/ j1 j2 j3 \
< >
\ J1 J2 J3 /

"""

# Check that the js and Js are only integer or half integer
if ((2 * j1 != round(2 * j1)) |
(2 * j2 != round(2 * j2)) |
(2 * j2 != round(2 * j2)) |
(2 * J1 != round(2 * J1)) |
(2 * J2 != round(2 * J2)) |
(2 * J3 != round(2 * J3))):
raise ValueError('All arguments must be integers or half-integers.')


# Check if the 4 triads ( (j1 j2 j3), (j1 J2 J3), (J1 j2 J3), (J1 J2 j3) )
# satisfy the triangular inequalities
if ((abs(j1 - j2) > j3) |
(j1 + j2 < j3) |
(abs(j1 - J2) > J3) |
(j1 + J2 < J3) |
(abs(J1 - j2) > J3) |
(J1 + j2 < J3) |
(abs(J1 - J2) > j3) |
(J1 + J2 < j3)):
# print '6j-Symbol is not triangular!'
return 0

# Check if the sum of the elements of each traid is an integer
if ((2 * (j1 + j2 + j3) != round(2 * (j1 + j2 + j3))) |
(2 * (j1 + J2 + J3) != round(2 * (j1 + J2 + J3))) |
(2 * (J1 + j2 + J3) != round(2 * (J1 + j2 + J3))) |
(2 * (J1 + J2 + j3) != round(2 * (J1 + J2 + j3)))):
# print '6j-Symbol is not triangular!'
return 0

# Arguments for the factorials
t1 = j1 + j2 + j3
t2 = j1 + J2 + J3
t3 = J1 + j2 + J3
t4 = J1 + J2 + j3
t5 = j1 + j2 + J1 + J2
t6 = j2 + j3 + J2 + J3
t7 = j1 + j3 + J1 + J3

# Finding summation borders
tmin = max(0, max(t1, max(t2, max(t3, t4))))
tmax = min(t5, min(t6, t7))
tvec = arange(tmin, tmax + 1, 1)

# Calculation the sum part of the 6j-Symbol
WignerReturn = 0
for t in tvec:
WignerReturn += ((-1)**t * factorial(t + 1) / (factorial(t - t1) *
factorial(t - t2) * factorial(t - t3) * factorial(t - t4) *
factorial(t5 - t) * factorial(t6 - t) * factorial(t7 - t)))

# Calculation of the 6j-Symbol
return WignerReturn * sqrt(triangle_coeff(j1, j2, j3) *
triangle_coeff(j1, J2, J3) * triangle_coeff(J1, j2, J3) *
triangle_coeff(J1, J2, j3))

def triangle_coeff(a,b,c):
# Calculating the triangle coefficient
return (factorial(a + b - c) * factorial(a - b + c) * factorial(-a + b + c)
/factorial(a + b + c + 1))