Skip to content

Commit

Permalink
add PSRL policy (#202)
Browse files Browse the repository at this point in the history
Add PSRL policy in tianshou/policy/modelbase/psrl.py.

Co-authored-by: n+e <[email protected]>
  • Loading branch information
yaofeng1998 and Trinkle23897 authored Sep 23, 2020
1 parent bf39b9e commit dcfcbb3
Show file tree
Hide file tree
Showing 9 changed files with 329 additions and 0 deletions.
1 change: 1 addition & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -31,6 +31,7 @@
- Vanilla Imitation Learning
- [Prioritized Experience Replay (PER)](https://arxiv.org/pdf/1511.05952.pdf)
- [Generalized Advantage Estimator (GAE)](https://arxiv.org/pdf/1506.02438.pdf)
- [Posterior Sampling Reinforcement Learning (PSRL)](https://www.ece.uvic.ca/~bctill/papers/learning/Strens_2000.pdf)

Here is Tianshou's other features:

Expand Down
1 change: 1 addition & 0 deletions docs/index.rst
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,7 @@ Welcome to Tianshou!
* :class:`~tianshou.policy.TD3Policy` `Twin Delayed DDPG <https://arxiv.org/pdf/1802.09477.pdf>`_
* :class:`~tianshou.policy.SACPolicy` `Soft Actor-Critic <https://arxiv.org/pdf/1812.05905.pdf>`_
* :class:`~tianshou.policy.DiscreteSACPolicy` `Discrete Soft Actor-Critic <https://arxiv.org/pdf/1910.07207.pdf>`_
* :class:`~tianshou.policy.PSRLPolicy` `Posterior Sampling Reinforcement Learning <https://www.ece.uvic.ca/~bctill/papers/learning/Strens_2000.pdf>`_
* :class:`~tianshou.policy.ImitationPolicy` Imitation Learning
* :class:`~tianshou.data.PrioritizedReplayBuffer` `Prioritized Experience Replay <https://arxiv.org/pdf/1511.05952.pdf>`_
* :meth:`~tianshou.policy.BasePolicy.compute_episodic_return` `Generalized Advantage Estimator <https://arxiv.org/pdf/1506.02438.pdf>`_
Expand Down
7 changes: 7 additions & 0 deletions examples/modelbase/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,7 @@
# PSRL

`NChain-v0`: `python3 psrl.py --task NChain-v0 --step-per-epoch 10 --rew-mean-prior 0 --rew-std-prior 1`

`FrozenLake-v0`: `python3 psrl.py --task FrozenLake-v0 --step-per-epoch 1000 --rew-mean-prior 0 --rew-std-prior 1 --add-done-loop --epoch 20`

`Taxi-v3`: `python3 psrl.py --task Taxi-v3 --step-per-epoch 1000 --rew-mean-prior 0 --rew-std-prior 2 --epoch 20`
1 change: 1 addition & 0 deletions examples/modelbase/psrl.py
Empty file added test/modelbase/__init__.py
Empty file.
97 changes: 97 additions & 0 deletions test/modelbase/test_psrl.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,97 @@
import gym
import torch
import pprint
import argparse
import numpy as np
from torch.utils.tensorboard import SummaryWriter

from tianshou.policy import PSRLPolicy
from tianshou.trainer import onpolicy_trainer
from tianshou.data import Collector, ReplayBuffer
from tianshou.env import DummyVectorEnv, SubprocVectorEnv


def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--task', type=str, default='NChain-v0')
parser.add_argument('--seed', type=int, default=1626)
parser.add_argument('--buffer-size', type=int, default=50000)
parser.add_argument('--epoch', type=int, default=5)
parser.add_argument('--step-per-epoch', type=int, default=5)
parser.add_argument('--collect-per-step', type=int, default=1)
parser.add_argument('--training-num', type=int, default=1)
parser.add_argument('--test-num', type=int, default=100)
parser.add_argument('--logdir', type=str, default='log')
parser.add_argument('--render', type=float, default=0.0)
parser.add_argument('--rew-mean-prior', type=float, default=0.0)
parser.add_argument('--rew-std-prior', type=float, default=1.0)
parser.add_argument('--gamma', type=float, default=0.99)
parser.add_argument('--eps', type=float, default=0.01)
parser.add_argument('--add-done-loop', action='store_true')
return parser.parse_known_args()[0]


def test_psrl(args=get_args()):
env = gym.make(args.task)
if args.task == "NChain-v0":
env.spec.reward_threshold = 3647 # described in PSRL paper
print("reward threshold:", env.spec.reward_threshold)
args.state_shape = env.observation_space.shape or env.observation_space.n
args.action_shape = env.action_space.shape or env.action_space.n
# train_envs = gym.make(args.task)
# train_envs = gym.make(args.task)
train_envs = DummyVectorEnv(
[lambda: gym.make(args.task) for _ in range(args.training_num)])
# test_envs = gym.make(args.task)
test_envs = SubprocVectorEnv(
[lambda: gym.make(args.task) for _ in range(args.test_num)])
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
train_envs.seed(args.seed)
test_envs.seed(args.seed)
# model
n_action = args.action_shape
n_state = args.state_shape
trans_count_prior = np.ones((n_state, n_action, n_state))
rew_mean_prior = np.full((n_state, n_action), args.rew_mean_prior)
rew_std_prior = np.full((n_state, n_action), args.rew_std_prior)
policy = PSRLPolicy(
trans_count_prior, rew_mean_prior, rew_std_prior, args.gamma, args.eps,
args.add_done_loop)
# collector
train_collector = Collector(
policy, train_envs, ReplayBuffer(args.buffer_size))
test_collector = Collector(policy, test_envs)
# log
writer = SummaryWriter(args.logdir + '/' + args.task)

def stop_fn(x):
if env.spec.reward_threshold:
return x >= env.spec.reward_threshold
else:
return False

train_collector.collect(n_step=args.buffer_size, random=True)
# trainer
result = onpolicy_trainer(
policy, train_collector, test_collector, args.epoch,
args.step_per_epoch, args.collect_per_step, 1,
args.test_num, 0, stop_fn=stop_fn, writer=writer,
test_in_train=False)

if __name__ == '__main__':
pprint.pprint(result)
# Let's watch its performance!
policy.eval()
test_envs.seed(args.seed)
test_collector.reset()
result = test_collector.collect(n_episode=[1] * args.test_num,
render=args.render)
print(f'Final reward: {result["rew"]}, length: {result["len"]}')
elif env.spec.reward_threshold:
assert result["best_reward"] >= env.spec.reward_threshold


if __name__ == '__main__':
test_psrl()
2 changes: 2 additions & 0 deletions tianshou/policy/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,7 @@
from tianshou.policy.modelfree.td3 import TD3Policy
from tianshou.policy.modelfree.sac import SACPolicy
from tianshou.policy.modelfree.discrete_sac import DiscreteSACPolicy
from tianshou.policy.modelbase.psrl import PSRLPolicy
from tianshou.policy.multiagent.mapolicy import MultiAgentPolicyManager


Expand All @@ -24,5 +25,6 @@
"TD3Policy",
"SACPolicy",
"DiscreteSACPolicy",
"PSRLPolicy",
"MultiAgentPolicyManager",
]
Empty file.
220 changes: 220 additions & 0 deletions tianshou/policy/modelbase/psrl.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,220 @@
import torch
import numpy as np
from typing import Any, Dict, Union, Optional

from tianshou.data import Batch
from tianshou.policy import BasePolicy


class PSRLModel(object):
"""Implementation of Posterior Sampling Reinforcement Learning Model.
:param np.ndarray trans_count_prior: dirichlet prior (alphas), with shape
(n_state, n_action, n_state).
:param np.ndarray rew_mean_prior: means of the normal priors of rewards,
with shape (n_state, n_action).
:param np.ndarray rew_std_prior: standard deviations of the normal priors
of rewards, with shape (n_state, n_action).
:param float discount_factor: in [0, 1].
:param float epsilon: for precision control in value iteration.
"""

def __init__(
self,
trans_count_prior: np.ndarray,
rew_mean_prior: np.ndarray,
rew_std_prior: np.ndarray,
discount_factor: float,
epsilon: float,
) -> None:
self.trans_count = trans_count_prior
self.n_state, self.n_action = rew_mean_prior.shape
self.rew_mean = rew_mean_prior
self.rew_std = rew_std_prior
self.rew_square_sum = np.zeros_like(rew_mean_prior)
self.rew_std_prior = rew_std_prior
self.discount_factor = discount_factor
self.rew_count = np.full(rew_mean_prior.shape, epsilon) # no weight
self.eps = epsilon
self.policy: np.ndarray
self.value = np.zeros(self.n_state)
self.updated = False
self.__eps = np.finfo(np.float32).eps.item()

def observe(
self,
trans_count: np.ndarray,
rew_sum: np.ndarray,
rew_square_sum: np.ndarray,
rew_count: np.ndarray,
) -> None:
"""Add data into memory pool.
For rewards, we have a normal prior at first. After we observed a
reward for a given state-action pair, we use the mean value of our
observations instead of the prior mean as the posterior mean. The
standard deviations are in inverse proportion to the number of the
corresponding observations.
:param np.ndarray trans_count: the number of observations, with shape
(n_state, n_action, n_state).
:param np.ndarray rew_sum: total rewards, with shape
(n_state, n_action).
:param np.ndarray rew_square_sum: total rewards' squares, with shape
(n_state, n_action).
:param np.ndarray rew_count: the number of rewards, with shape
(n_state, n_action).
"""
self.updated = False
self.trans_count += trans_count
sum_count = self.rew_count + rew_count
self.rew_mean = (self.rew_mean * self.rew_count + rew_sum) / sum_count
self.rew_square_sum += rew_square_sum
raw_std2 = self.rew_square_sum / sum_count - self.rew_mean ** 2
self.rew_std = np.sqrt(1 / (
sum_count / (raw_std2 + self.__eps) + 1 / self.rew_std_prior ** 2))
self.rew_count = sum_count

def sample_trans_prob(self) -> np.ndarray:
sample_prob = torch.distributions.Dirichlet(
torch.from_numpy(self.trans_count)).sample().numpy()
return sample_prob

def sample_reward(self) -> np.ndarray:
return np.random.normal(self.rew_mean, self.rew_std)

def solve_policy(self) -> None:
self.updated = True
self.policy, self.value = self.value_iteration(
self.sample_trans_prob(),
self.sample_reward(),
self.discount_factor,
self.eps,
self.value,
)

@staticmethod
def value_iteration(
trans_prob: np.ndarray,
rew: np.ndarray,
discount_factor: float,
eps: float,
value: np.ndarray,
) -> np.ndarray:
"""Value iteration solver for MDPs.
:param np.ndarray trans_prob: transition probabilities, with shape
(n_state, n_action, n_state).
:param np.ndarray rew: rewards, with shape (n_state, n_action).
:param float eps: for precision control.
:param float discount_factor: in [0, 1].
:param np.ndarray value: the initialize value of value array, with
shape (n_state, ).
:return: the optimal policy with shape (n_state, ).
"""
Q = rew + discount_factor * trans_prob.dot(value)
new_value = Q.max(axis=1)
while not np.allclose(new_value, value, eps):
value = new_value
Q = rew + discount_factor * trans_prob.dot(value)
new_value = Q.max(axis=1)
# this is to make sure if Q(s, a1) == Q(s, a2) -> choose a1/a2 randomly
Q += eps * np.random.randn(*Q.shape)
return Q.argmax(axis=1), new_value

def __call__(
self,
obs: np.ndarray,
state: Optional[Any] = None,
info: Dict[str, Any] = {},
) -> np.ndarray:
if not self.updated:
self.solve_policy()
return self.policy[obs]


class PSRLPolicy(BasePolicy):
"""Implementation of Posterior Sampling Reinforcement Learning.
Reference: Strens M. A Bayesian framework for reinforcement learning [C]
//ICML. 2000, 2000: 943-950.
:param np.ndarray trans_count_prior: dirichlet prior (alphas), with shape
(n_state, n_action, n_state).
:param np.ndarray rew_mean_prior: means of the normal priors of rewards,
with shape (n_state, n_action).
:param np.ndarray rew_std_prior: standard deviations of the normal priors
of rewards, with shape (n_state, n_action).
:param float discount_factor: in [0, 1].
:param float epsilon: for precision control in value iteration.
:param bool add_done_loop: whether to add an extra self-loop for the
terminal state in MDP, defaults to False.
.. seealso::
Please refer to :class:`~tianshou.policy.BasePolicy` for more detailed
explanation.
"""

def __init__(
self,
trans_count_prior: np.ndarray,
rew_mean_prior: np.ndarray,
rew_std_prior: np.ndarray,
discount_factor: float = 0.99,
epsilon: float = 0.01,
add_done_loop: bool = False,
**kwargs: Any,
) -> None:
super().__init__(**kwargs)
assert (
0.0 <= discount_factor <= 1.0
), "discount factor should be in [0, 1]"
self.model = PSRLModel(
trans_count_prior, rew_mean_prior, rew_std_prior,
discount_factor, epsilon)
self._add_done_loop = add_done_loop

def forward(
self,
batch: Batch,
state: Optional[Union[dict, Batch, np.ndarray]] = None,
**kwargs: Any,
) -> Batch:
"""Compute action over the given batch data with PSRL model.
:return: A :class:`~tianshou.data.Batch` with "act" key containing
the action.
.. seealso::
Please refer to :meth:`~tianshou.policy.BasePolicy.forward` for
more detailed explanation.
"""
act = self.model(batch.obs, state=state, info=batch.info)
return Batch(act=act)

def learn(
self, batch: Batch, *args: Any, **kwargs: Any
) -> Dict[str, float]:
n_s, n_a = self.model.n_state, self.model.n_action
trans_count = np.zeros((n_s, n_a, n_s))
rew_sum = np.zeros((n_s, n_a))
rew_square_sum = np.zeros((n_s, n_a))
rew_count = np.zeros((n_s, n_a))
for b in batch.split(size=1):
obs, act, obs_next = b.obs, b.act, b.obs_next
trans_count[obs, act, obs_next] += 1
rew_sum[obs, act] += b.rew
rew_square_sum[obs, act] += b.rew ** 2
rew_count[obs, act] += 1
if self._add_done_loop and b.done:
# special operation for terminal states: add a self-loop
trans_count[obs_next, :, obs_next] += 1
rew_count[obs_next, :] += 1
self.model.observe(trans_count, rew_sum, rew_square_sum, rew_count)
return {
"psrl/rew_mean": self.model.rew_mean.mean(),
"psrl/rew_std": self.model.rew_std.mean(),
}

0 comments on commit dcfcbb3

Please sign in to comment.