In this project, I built a pipeline that can be used within a web or mobile app to process real-world, user-supplied images. Given an image of a dog, the algorithm will identify an estimate of the canine’s breed. If supplied an image of a human, the code will identify the resembling dog breed.
In the first part of the project, I worked in a Jupyter notebook to perform the following steps:
- Use Haar feature-based cascade classifiers to detect human faces in images
- Use a pre-trained (on ImageNet) ResNet-50 model to detect dogs in images
- Design a CNN architecture to identify dog breeds
- Use Transfer Learning from VGG16 to identify dog breeds
- Use Transfer Learning from GoogLeNet to identify dog breeds
My own CNN architecture (step 3) reached a 35.76% accuracy on the test set, well above the minimum requirements for the project (1%). It was trained for 4 hours on a GPU. However, using transfer learning from the Inception/GoogLeNet was very successful with a final accuracy of 80.5%
Check the Jupyter notebook dog_app.ipynb
for more details.
In a second step, I built a Flask web application to serve the model through a Bootstrap/JQuery web interface. Here is the final result:
- Clone the repository and navigate to the downloaded folder.
git clone https://github.com/tartieret/DogBreedDetector
cd DogBreedDetector
-
Download the dog dataset. Unzip the folder and place it in the repo, at location
path/to/dog-project/dogImages
. -
Download the human dataset. Unzip the folder and place it in the repo, at location
path/to/dog-project/lfw
. If you are using a Windows machine, you are encouraged to use 7zip to extract the folder. -
Donwload the VGG-16 bottleneck features for the dog dataset. Place it in the repo, at location
path/to/dog-project/bottleneck_features
. -
Donwload the Inception bottleneck features for the dog dataset. Place it in the repo, at location
path/to/dog-project/bottleneck_features
. -
(Optional) If you plan to install TensorFlow with GPU support on your local machine, follow the guide to install the necessary NVIDIA software on your system. If you are using an EC2 GPU instance, you can skip this step.
-
(Optional) If you are running the project on your local machine (and not using AWS), create (and activate) a new environment.
- Linux (to install with GPU support, change
requirements/dog-linux.yml
torequirements/dog-linux-gpu.yml
):
conda env create -f requirements/dog-linux.yml source activate dog-project
- Mac (to install with GPU support, change
requirements/dog-mac.yml
torequirements/dog-mac-gpu.yml
):
conda env create -f requirements/dog-mac.yml source activate dog-project
NOTE: Some Mac users may need to install a different version of OpenCV
conda install --channel https://conda.anaconda.org/menpo opencv3
- Windows (to install with GPU support, change
requirements/dog-windows.yml
torequirements/dog-windows-gpu.yml
):
conda env create -f requirements/dog-windows.yml activate dog-project
- Linux (to install with GPU support, change
-
(Optional) If you are running the project on your local machine (and not using AWS) and Step 6 throws errors, try this alternative step to create your environment.
- Linux or Mac (to install with GPU support, change
requirements/requirements.txt
torequirements/requirements-gpu.txt
):
conda create --name dog-project python=3.5 source activate dog-project pip install -r requirements/requirements.txt
NOTE: Some Mac users may need to install a different version of OpenCV
conda install --channel https://conda.anaconda.org/menpo opencv3
- Windows (to install with GPU support, change
requirements/requirements.txt
torequirements/requirements-gpu.txt
):
conda create --name dog-project python=3.5 activate dog-project pip install -r requirements/requirements.txt
- Linux or Mac (to install with GPU support, change
-
(Optional) If you are using AWS, install Tensorflow.
sudo python3 -m pip install -r requirements/requirements-gpu.txt
-
Switch Keras backend to TensorFlow.
- Linux or Mac:
KERAS_BACKEND=tensorflow python -c "from keras import backend"
- Windows:
set KERAS_BACKEND=tensorflow python -c "from keras import backend"
- Linux or Mac:
-
(Optional) If you are running the project on your local machine (and not using AWS), create an IPython kernel for the
dog-project
environment.
python -m ipykernel install --user --name dog-project --display-name "dog-project"
- Open the notebook.
jupyter notebook dog_app.ipynb
- Define an environment variable:
export FLASK_APP=app.py
If you are on Windows, you will need to use set
instead of export
- Run the Flask server
flask run
- Open your browser and visit http://127.0.0.1:5000