Unofficial Pytorch implementation of following papers for predicting Protein Subcellular Localization from quantitative label-free imaging with phase and polarization:
- Create Environment
conda create -n <environment_name> python=3.8
conda activate <enviroment_name>
pip install -r requirements.txt
- Download dataset as mentioned in Data section
- Run inference on pretrained weights
python inference.py --config
python train_test.py --config
For Tensorboard:
tensorboard --logdir logs/
QLIPP can be downloaded from repo.
- The directory structure of the whole project is as follows:
.
├── Network
│ ├──datasets
│ │ └── dataset_*.py
│ ├──train.py
│ ├──test.py
│ └──...
├── model
│ └── TU_Synapse128
│ └── res_True_head_4_ch_512_nuclei
│ ├── UTransform-129.pth
│ └── *.pth
└── data
└──Synapse
├── train
│ ├── im_c001_z011_t000_p005_r0-256_c0-256_sl0-3.npy
│ └── *.npy
└── train_label
├── im_c000_z011_t000_p005_r0-256_c0-256_sl0-3.npy
└── *.npy