Skip to content

feat: add C implementation for blas/base/dsyr2 #6572

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 34 commits into from
Jul 16, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
34 commits
Select commit Hold shift + click to select a range
fcf1b0b
feat: add c implementation for blas/base/dsyr2
ShabiShett07 Apr 5, 2025
b57a3f4
chore: add correct packages
ShabiShett07 Apr 5, 2025
441ce2e
chore: update copyright years
stdlib-bot Apr 5, 2025
d466893
fix: test case errors
ShabiShett07 Apr 6, 2025
5bdfcf1
fix: jsdoc examples
ShabiShett07 Apr 6, 2025
dc00b12
chore: update implementation
ShabiShett07 May 7, 2025
c5705ab
chore: update datatypes
ShabiShett07 May 7, 2025
225459e
chore: update header files
ShabiShett07 May 7, 2025
f6fa175
remove header files
ShabiShett07 May 7, 2025
468b2dc
chore: clean-up
ShabiShett07 Jun 28, 2025
7eec8e6
chore: minor clean-up
ShabiShett07 Jun 28, 2025
b3e0f9f
chore: minor clean-up
ShabiShett07 Jun 28, 2025
924b10b
chore: update manifest.json
ShabiShett07 Jun 28, 2025
57bf0f7
chore: minor clean-up
ShabiShett07 Jun 28, 2025
19362c1
chore: add checks
ShabiShett07 Jun 28, 2025
3faf922
chore: add checks
ShabiShett07 Jun 28, 2025
41c8ba7
chore: minor clean-up
ShabiShett07 Jun 28, 2025
ecc6237
Merge remote-tracking branch 'upstream/develop' into feature/dsyr2
stdlib-bot Jun 29, 2025
4d47e87
chore: clean-up
ShabiShett07 Jun 29, 2025
9d5df46
chore: minor clean-up
ShabiShett07 Jun 29, 2025
3491219
chore: minor clean-up
ShabiShett07 Jun 29, 2025
97dfb64
chore: minor clean-up
ShabiShett07 Jun 29, 2025
87c7fec
chore: update implementation
ShabiShett07 Jun 30, 2025
77b1dee
Merge remote-tracking branch 'upstream/develop' into feature/dsyr2
stdlib-bot Jul 12, 2025
3da5d9e
Update README.md
aman-095 Jul 15, 2025
6e9d58b
Update README.md
aman-095 Jul 15, 2025
19ea8e0
chore: update parameter descriptions
ShabiShett07 Jul 16, 2025
32d64c8
chore: update doxygen
ShabiShett07 Jul 16, 2025
f2dcd77
Discard changes to lib/node_modules/@stdlib/blas/base/dsyr2/benchmark…
kgryte Jul 16, 2025
c1666bf
Discard changes to lib/node_modules/@stdlib/blas/base/dsyr2/benchmark…
kgryte Jul 16, 2025
cf37158
docs: update description
kgryte Jul 16, 2025
76dd1a9
docs: update description
kgryte Jul 16, 2025
704d508
fix: update error messages
kgryte Jul 16, 2025
47d2714
chore: clean-up
kgryte Jul 16, 2025
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
144 changes: 122 additions & 22 deletions lib/node_modules/@stdlib/blas/base/dsyr2/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -37,12 +37,12 @@ Performs the symmetric rank 2 operation `A = α*x*y^T + α*y*x^T + A`, where `α
```javascript
var Float64Array = require( '@stdlib/array/float64' );

var A = new Float64Array( [ 1.0, 2.0, 3.0, 0.0, 1.0, 2.0, 0.0, 0.0, 1.0 ] );
var A = new Float64Array( [ 1.0, 2.0, 3.0, 2.0, 1.0, 2.0, 3.0, 2.0, 1.0 ] );
var x = new Float64Array( [ 1.0, 2.0, 3.0 ] );
var y = new Float64Array( [ 1.0, 2.0, 3.0 ] );

dsyr2( 'row-major', 'upper', 3, 1.0, x, 1, y, 1, A, 3 );
// A => <Float64Array>[ 3.0, 6.0, 9.0, 0.0, 9.0, 14.0, 0.0, 0.0, 19.0 ]
// A => <Float64Array>[ 3.0, 6.0, 9.0, 2.0, 9.0, 14.0, 3.0, 2.0, 19.0 ]
```

The function has the following parameters:
Expand All @@ -52,9 +52,9 @@ The function has the following parameters:
- **N**: number of elements along each dimension of `A`.
- **α**: scalar constant.
- **x**: first input [`Float64Array`][mdn-float64array].
- **sx**: index increment for `x`.
- **sx**: stride length for `x`.
- **y**: second input [`Float64Array`][mdn-float64array].
- **sy**: index increment for `y`.
- **sy**: stride length for `y`.
- **A**: input matrix stored in linear memory as a [`Float64Array`][mdn-float64array].
- **lda**: stride of the first dimension of `A` (a.k.a., leading dimension of the matrix `A`).

Expand All @@ -63,12 +63,12 @@ The stride parameters determine how elements in the input arrays are accessed at
```javascript
var Float64Array = require( '@stdlib/array/float64' );

var A = new Float64Array( [ 1.0, 2.0, 3.0, 0.0, 1.0, 2.0, 0.0, 0.0, 1.0 ] );
var A = new Float64Array( [ 1.0, 2.0, 3.0, 2.0, 1.0, 2.0, 3.0, 2.0, 1.0 ] );
var x = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0 ] );
var y = new Float64Array( [ 1.0, 2.0, 3.0 ] );

dsyr2( 'row-major', 'upper', 3, 1.0, x, 2, y, 1, A, 3 );
// A => <Float64Array>[ 3.0, 7.0, 11.0, 0.0, 13.0, 21.0, 0.0, 0.0, 31.0 ]
// A => <Float64Array>[ 3.0, 7.0, 11.0, 2.0, 13.0, 21.0, 3.0, 2.0, 31.0 ]
```

Note that indexing is relative to the first index. To introduce an offset, use [`typed array`][mdn-typed-array] views.
Expand All @@ -81,14 +81,14 @@ var Float64Array = require( '@stdlib/array/float64' );
// Initial arrays...
var x0 = new Float64Array( [ 0.0, 1.0, 1.0, 1.0 ] );
var y0 = new Float64Array( [ 0.0, 1.0, 2.0, 3.0 ] );
var A = new Float64Array( [ 1.0, 2.0, 3.0, 0.0, 1.0, 2.0, 0.0, 0.0, 1.0 ] );
var A = new Float64Array( [ 1.0, 2.0, 3.0, 2.0, 1.0, 2.0, 3.0, 2.0, 1.0 ] );

// Create offset views...
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var y1 = new Float64Array( y0.buffer, y0.BYTES_PER_ELEMENT*1 ); // start at 2nd element

dsyr2( 'row-major', 'upper', 3, 1.0, x1, 1, y1, 1, A, 3 );
// A => <Float64Array>[ 3.0, 5.0, 7.0, 0.0, 5.0, 7.0, 0.0, 0.0, 7.0 ]
// A => <Float64Array>[ 3.0, 5.0, 7.0, 2.0, 5.0, 7.0, 3.0, 2.0, 7.0 ]
```

#### dsyr2.ndarray( uplo, N, α, x, sx, ox, y, sy, oy, A, sa1, sa2, oa )
Expand All @@ -98,12 +98,12 @@ Performs the symmetric rank 2 operation `A = α*x*y^T + α*y*x^T + A`, using alt
```javascript
var Float64Array = require( '@stdlib/array/float64' );

var A = new Float64Array( [ 1.0, 2.0, 3.0, 0.0, 1.0, 2.0, 0.0, 0.0, 1.0 ] );
var A = new Float64Array( [ 1.0, 2.0, 3.0, 2.0, 1.0, 2.0, 3.0, 2.0, 1.0 ] );
var x = new Float64Array( [ 1.0, 2.0, 3.0 ] );
var y = new Float64Array( [ 1.0, 2.0, 3.0 ] );

dsyr2.ndarray( 'upper', 3, 1.0, x, 1, 0, y, 1, 0, A, 3, 1, 0 );
// A => <Float64Array>[ 3.0, 6.0, 9.0, 0.0, 9.0, 14.0, 0.0, 0.0, 19.0 ]
// A => <Float64Array>[ 3.0, 6.0, 9.0, 2.0, 9.0, 14.0, 3.0, 2.0, 19.0 ]
```

The function has the following additional parameters:
Expand All @@ -119,12 +119,12 @@ While [`typed array`][mdn-typed-array] views mandate a view offset based on the
```javascript
var Float64Array = require( '@stdlib/array/float64' );

var A = new Float64Array( [ 1.0, 2.0, 3.0, 0.0, 1.0, 2.0, 0.0, 0.0, 1.0 ] );
var A = new Float64Array( [ 1.0, 2.0, 3.0, 2.0, 1.0, 2.0, 3.0, 2.0, 1.0 ] );
var x = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0 ] );
var y = new Float64Array( [ 1.0, 2.0, 3.0 ] );

dsyr2.ndarray( 'upper', 3, 1.0, x, -2, 4, y, 1, 0, A, 3, 1, 0 );
// A => <Float64Array>[ 11.0, 15.0, 19.0, 0.0, 13.0, 13.0, 0.0, 0.0, 7.0 ]
// A => <Float64Array>[ 11.0, 15.0, 19.0, 2.0, 13.0, 13.0, 3.0, 2.0, 7.0 ]
```

</section>
Expand Down Expand Up @@ -158,12 +158,19 @@ var opts = {

var N = 3;

var A = ones( N*N, opts.dtype );
// Create N-by-N symmetric matrices:
var A1 = ones( N*N, opts.dtype );
var A2 = ones( N*N, opts.dtype );

// Create random vectors:
var x = discreteUniform( N, -10.0, 10.0, opts );
var y = discreteUniform( N, -10.0, 10.0, opts );

dsyr2( 'row-major', 'upper', 3, 1.0, x, 1, y, 1, A, 3 );
console.log( A );
dsyr2( 'row-major', 'upper', 3, 1.0, x, 1, y, 1, A1, 3 );
console.log( A1 );

dsyr2.ndarray( 'upper', 3, 1.0, x, 1, 0, y, 1, 0, A2, 3, 1, 0 );
console.log( A2 );
```

</section>
Expand Down Expand Up @@ -193,21 +200,74 @@ console.log( A );
### Usage

```c
TODO
#include "stdlib/blas/base/dsyr2.h"
```

#### c_dsyr2( order, uplo, N, alpha, \*X, sx, \*Y, sy, \*A, LDA )

Performs the symmetric rank 2 operation `A = α*x*y^T + α*y*x^T + A` where `α` is a scalar, `x` and `y` are `N` element vectors, and `A` is an `N` by `N` symmetric matrix.

```c
#include "stdlib/blas/base/shared.h"

double A[] = { 1.0, 2.0, 3.0, 2.0, 1.0, 2.0, 3.0, 2.0, 1.0 };
const double x[] = { 1.0, 2.0, 3.0 };
const double y[] = { 1.0, 2.0, 3.0 };

c_dsyr2( CblasColMajor, CblasUpper, 3, 1.0, x, 1, y, 1, A, 3 );
```

#### TODO
The function accepts the following arguments:

TODO.
- **order**: `[in] CBLAS_LAYOUT` storage layout.
- **uplo**: `[in] CBLAS_UPLO` specifies whether the upper or lower triangular part of the symmetric matrix `A` should be referenced.
- **N**: `[in] CBLAS_INT` number of elements along each dimension of `A`.
- **alpha**: `[in] double` scalar constant.
- **X**: `[in] double*` first input array.
- **strideX**: `[in] CBLAS_INT` stride length for `X`.
- **Y**: `[in] double*` second input array.
- **strideY**: `[in] CBLAS_INT` stride length for `Y`.
- **A**: `[inout] double*` input matrix.
- **LDA**: `[in] CBLAS_INT` stride of the first dimension of `A` (a.k.a., leading dimension of the matrix `A`).

```c
TODO
void c_dsyr2( const CBLAS_LAYOUT order, const CBLAS_UPLO uplo, const CBLAS_INT N, const double alpha, const double *X, const CBLAS_INT strideX, const double *Y, const CBLAS_INT strideY, double *A, const CBLAS_INT LDA )
```

<!-- lint disable maximum-heading-length -->

#### c_dsyr2_ndarray( uplo, N, alpha, \*X, sx, ox, \*Y, sy, oy, \*A, sa1, sa2, oa )

Performs the symmetric rank 2 operation `A = α*x*y^T + α*y*x^T + A`, using alternative indexing semantics and where `α` is a scalar, `x` and `y` are `N` element vectors, and `A` is an `N` by `N` symmetric matrix.

```c
#include "stdlib/blas/base/shared.h"

double A[] = { 1.0, 2.0, 3.0, 2.0, 1.0, 2.0, 3.0, 2.0, 1.0 };
const double x[] = { 1.0, 2.0, 3.0 };
const double y[] = { 1.0, 2.0, 3.0 };

c_dsyr2_ndarray( CblasUpper, 3, 1.0, x, 1, 0, y, 1, 0, A, 3, 1, 0 );
```

TODO
The function accepts the following arguments:

- **uplo**: `[in] CBLAS_UPLO` specifies whether the upper or lower triangular part of the symmetric matrix `A` should be referenced.
- **N**: `[in] CBLAS_INT` number of elements along each dimension of `A`.
- **alpha**: `[in] double` scalar constant.
- **X**: `[in] double*` first input array.
- **sx**: `[in] CBLAS_INT` stride length for `X`.
- **ox**: `[in] CBLAS_INT` starting index for `X`.
- **Y**: `[in] double` second input array.
- **sy**: `[in] CBLAS_INT` stride length for `Y`.
- **oy**: `[in] CBLAS_INT` starting index for `Y`.
- **A**: `[inout] double*` input matrix.
- **sa1**: `[in] CBLAS_INT` stride of the first dimension of `A`.
- **sa2**: `[in] CBLAS_INT` stride of the second dimension of `A`.
- **oa**: `[in] CBLAS_INT` starting index for `A`.

```c
TODO
void c_dsyr2_ndarray( const CBLAS_UPLO uplo, const CBLAS_INT N, const double alpha, const double *X, const CBLAS_INT strideX, const CBLAS_INT offsetX, const double *Y, CBLAS_INT strideY, const CBLAS_INT offsetY, double *A, const CBLAS_INT strideA1, const CBLAS_INT strideA2, const CBLAS_INT offsetA )
```

</section>
Expand All @@ -229,7 +289,47 @@ TODO
### Examples

```c
TODO
#include "stdlib/blas/base/dsyr2.h"
#include "stdlib/blas/base/shared.h"
#include <stdio.h>

int main( void ) {
// Define 3x3 symmetric matrices stored in row-major layout:
double A1[ 3*3 ] = {
1.0, 2.0, 3.0,
2.0, 1.0, 2.0,
3.0, 2.0, 1.0
};

double A2[ 3*3 ] = {
1.0, 2.0, 3.0,
2.0, 1.0, 2.0,
3.0, 2.0, 1.0
};

// Define `x` and `y` vectors:
const double x[ 3 ] = { 1.0, 2.0, 3.0 };
const double y[ 3 ] = { 1.0, 2.0, 3.0 };

// Specify the number of elements along each dimension of `A1` and `A2`:
const int N = 3;

// Perform the symmetric rank 2 operation `A = α*x*y^T + α*y*x^T + A`:
c_dsyr2( CblasColMajor, CblasUpper, N, 1.0, x, 1, y, 1, A1, N );

// Print the result:
for ( int i = 0; i < N*N; i++ ) {
printf( "A1[ %i ] = %lf\n", i, A1[ i ] );
}

// Perform the symmetric rank 2 operation `A = α*x*y^T + α*y*x^T + A` using alternative indexing semantics:
c_dsyr2_ndarray( CblasUpper, N, 1.0, x, 1, 0, y, 1, 0, A2, N, 1, 0 );

// Print the result:
for ( int i = 0; i < N*N; i++ ) {
printf( "A2[ %i ] = %lf\n", i, A2[ i ] );
}
}
```

</section>
Expand Down
110 changes: 110 additions & 0 deletions lib/node_modules/@stdlib/blas/base/dsyr2/benchmark/benchmark.native.js
Original file line number Diff line number Diff line change
@@ -0,0 +1,110 @@
/**
* @license Apache-2.0
*
* Copyright (c) 2025 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

'use strict';

// MODULES //

var resolve = require( 'path' ).resolve;
var bench = require( '@stdlib/bench' );
var isnan = require( '@stdlib/math/base/assert/is-nan' );
var ones = require( '@stdlib/array/ones' );
var pow = require( '@stdlib/math/base/special/pow' );
var floor = require( '@stdlib/math/base/special/floor' );
var tryRequire = require( '@stdlib/utils/try-require' );
var pkg = require( './../package.json' ).name;


// VARIABLES //

var dsyr2 = tryRequire( resolve( __dirname, './../lib/dsyr2.native.js' ) );
var opts = {
'skip': ( dsyr2 instanceof Error )
};
var options = {
'dtype': 'float64'
};


// FUNCTIONS //

/**
* Creates a benchmark function.
*
* @private
* @param {PositiveInteger} N - number of elements along each dimension
* @returns {Function} benchmark function
*/
function createBenchmark( N ) {
var x = ones( N, options.dtype );
var y = ones( N, options.dtype );
var A = ones( N*N, options.dtype );
return benchmark;

/**
* Benchmark function.
*
* @private
* @param {Benchmark} b - benchmark instance
*/
function benchmark( b ) {
var z;
var i;

b.tic();
for ( i = 0; i < b.iterations; i++ ) {
z = dsyr2( 'row-major', 'upper', N, 1.0, x, 1, y, 1, A, N );
if ( isnan( z[ i%z.length ] ) ) {
b.fail( 'should not return NaN' );
}
}
b.toc();
if ( isnan( z[ i%z.length ] ) ) {
b.fail( 'should not return NaN' );
}
b.pass( 'benchmark finished' );
b.end();
}
}


// MAIN //

/**
* Main execution sequence.
*
* @private
*/
function main() {
var min;
var max;
var N;
var f;
var i;

min = 1; // 10^min
max = 6; // 10^max

for ( i = min; i <= max; i++ ) {
N = floor( pow( pow( 10, i ), 1.0/2.0 ) );
f = createBenchmark( N );
bench( pkg+'::native:size='+(N*N), opts, f );
}
}

main();
Loading