Skip to content

statisticsnorway/dapla-toolbelt-pseudo

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Dapla Toolbelt Pseudo

PyPI Status Python Version License

Documentation Tests Coverage Quality Gate Status

pre-commit Black Ruff Poetry

Pseudonymize, repseudonymize and depseudonymize data on Dapla.

Features

Other examples can also be viewed through notebook files for pseudo and depseudo

Pseudonymize

from dapla_pseudo import Pseudonymize
import polars as pl

file_path="data/personer.csv"
dtypes = {"fnr": pl.Utf8, "fornavn": pl.Utf8, "etternavn": pl.Utf8, "kjonn": pl.Categorical, "fodselsdato": pl.Utf8}
df = pl.read_csv(file_path, dtypes=dtypes) # Create DataFrame from file

# Example: Single field default encryption (DAEAD)
result_df = (
    Pseudonymize.from_polars(df)                   # Specify what dataframe to use
    .on_fields("fornavn")                          # Select the field to pseudonymize
    .with_default_encryption()                     # Select the pseudonymization algorithm to apply
    .run()                                         # Apply pseudonymization to the selected field
    .to_polars()                                   # Get the result as a polars dataframe
)

# Example: Multiple fields default encryption (DAEAD)
result_df = (
    Pseudonymize.from_polars(df)                   # Specify what dataframe to use
    .on_fields("fornavn", "etternavn")             # Select multiple fields to pseudonymize
    .with_default_encryption()                     # Select the pseudonymization algorithm to apply
    .run()                                         # Apply pseudonymization to the selected fields
    .to_polars()                                   # Get the result as a polars dataframe
)

# Example: Single field sid mapping and pseudonymization (FPE)
result_df = (
    Pseudonymize.from_polars(df)                   # Specify what dataframe to use
    .on_fields("fnr")                              # Select the field to pseudonymize
    .with_stable_id()                              # Map the selected field to stable id
    .run()                                         # Apply pseudonymization to the selected fields
    .to_polars()                                   # Get the result as a polars dataframe
)

The default encryption algorithm is DAEAD (Deterministic Authenticated Encryption with Associated Data). However, if the field is a valid Norwegian personal identification number (fnr, dnr), the recommended way to pseudonymize is to use the function with_stable_id() to convert the identification number to a stable ID (SID) prior to pseudonymization. In that case, the pseudonymization algorithm is FPE (Format Preserving Encryption).

Important

FPE requires minimum two bytes/characters to perform encryption and minimum four bytes in case of Unicode.

If a field cannot be converted using the function with_stable_id() the default behaviour is to use the original value as input to the FPE encryption function. However, this behaviour can be changed by supplying a on_map_failure argument like this:

from dapla_pseudo import Pseudonymize

# Example: Single field sid mapping and pseudonymization (FPE), unmatching SIDs will return Null
result_df = (
    Pseudonymize.from_polars(df)
    .on_fields("fnr")
    .with_stable_id(on_map_failure="RETURN_NULL")
    .run()
    .to_polars()
)

Reading dataframes

Note that you may also use a Pandas DataFrame as an input or output, by exchanging from_polars with from_pandas and to_polars with to_pandas. However, Pandas is much less performant, so take special care especially if your dataset is large.

Example:

# Example: Single field default encryption (DAEAD)
df_pandas = (
    Pseudonymize.from_pandas(df)                   # Specify what dataframe to use
    .on_fields("fornavn")                          # Select the field to pseudonymize
    .with_default_encryption()                     # Select the pseudonymization algorithm to apply
    .run()                                         # Apply pseudonymization to the selected field
    .to_pandas()                                   # Get the result as a polars dataframe
)

Validate SID mapping

from dapla_pseudo import Validator
import polars as pl

file_path="data/personer.csv"
dtypes = {"fnr": pl.Utf8, "fornavn": pl.Utf8, "etternavn": pl.Utf8, "kjonn": pl.Categorical, "fodselsdato": pl.Utf8}
df = pl.read_polars(file_path, dtypes=dtypes)

result = (
    Validator.from_polars(df)                   # Specify what dataframe to use
    .on_field("fnr")                            # Select the field to validate
    .validate_map_to_stable_id()                # Validate that all the field values can be mapped to a SID
)
# The resulting dataframe contains the field values that didn't have a corresponding SID
result.to_polars()

A sid_snapshot_date can also be specified to validate that the field values can be mapped to a SID at a specific date:

from dapla_pseudo import Validator
import polars as pl

file_path="data/personer.csv"
dtypes = {"fnr": pl.Utf8, "fornavn": pl.Utf8, "etternavn": pl.Utf8, "kjonn": pl.Categorical, "fodselsdato": pl.Utf8}

df = pl.read_csv(file_path, dtypes=dtypes)

result = (
    Validator.from_polars(df)
    .on_field("fnr")
    .validate_map_to_stable_id(
        sid_snapshot_date="2023-08-29"
    )
)
# Show metadata about the validation (e.g. which version of the SID catalog was used)
result.metadata
# Show the field values that didn't have a corresponding SID
result.to_polars()

Advanced usage

Pseudonymize

Read from file systems

from dapla_pseudo import Pseudonymize
from dapla import AuthClient


file_path="data/personer.csv"

options = {
    "dtypes": {"fnr": pl.Utf8, "fornavn": pl.Utf8, "etternavn": pl.Utf8, "kjonn": pl.Categorical, "fodselsdato": pl.Utf8}
}


# Example: Read DataFrame from file
result_df = (
    Pseudonymize.from_file(file_path)   # Read the data from file
    .on_fields("fornavn", "etternavn")  # Select multiple fields to pseudonymize
    .with_default_encryption()          # Select the pseudonymization algorithm to apply
    .run()                              # Apply pseudonymization to the selected fields
    .to_polars(**options)               # Get the result as a Pandas DataFrame
)

# Example: Read dataframe from GCS bucket
options = {
    "dtypes": {"fnr": pl.Utf8, "fornavn": pl.Utf8, "etternavn": pl.Utf8, "kjonn": pl.Categorical, "fodselsdato": pl.Utf8}
}

gcs_file_path = "gs://ssb-staging-dapla-felles-data-delt/felles/pseudo-examples/andeby_personer.csv"

result_df = (
    Pseudonymize.from_file(gcs_file_path)  # Read DataFrame from GCS
    .on_fields("fornavn", "etternavn")     # Select multiple fields to pseudonymize
    .with_default_encryption()             # Select the pseudonymization algorithm to apply
    .run()                                 # Apply pseudonymization to the selected fields
    .to_polars(**options)                  # Get the result as a polars dataframe
)

Pseudonymize using custom keys/keysets

from dapla_pseudo import Pseudonymize, PseudoKeyset

# Pseudonymize fields in a local file using the default key:
df = (
    Pseudonymize.from_polars(df)                            # Specify what dataframe to use
    .on_fields("fornavn")                                   # Select the field to pseudonymize
    .with_default_encryption()                              # Select the pseudonymization algorithm to apply
    .run()                                         # Apply pseudonymization to the selected field
    .to_polars()                                            # Get the result as a polars dataframe
)

# Pseudonymize fields in a local file, explicitly denoting the key to use:
df = (
    Pseudonymize.from_polars(df)                            # Specify what dataframe to use
    .on_fields("fornavn")                                   # Select the field to pseudonymize
    .with_default_encryption(custom_key="ssb-common-key-2") # Select the pseudonymization algorithm to apply
    .run()                                         # Apply pseudonymization to the selected field
    .to_polars()                                            # Get the result as a polars dataframe
)

# Pseudonymize a local file using a custom keyset:
import json
custom_keyset = PseudoKeyset(
    encrypted_keyset="CiQAp91NBhLdknX3j9jF6vwhdyURaqcT9/M/iczV7fLn...8XYFKwxiwMtCzDT6QGzCCCM=",
    keyset_info={
        "primaryKeyId": 1234567890,
        "keyInfo": [
            {
                "typeUrl": "type.googleapis.com/google.crypto.tink.AesSivKey",
                "status": "ENABLED",
                "keyId": 1234567890,
                "outputPrefixType": "TINK",
            }
        ],
    },
    kek_uri="gcp-kms://projects/some-project-id/locations/europe-north1/keyRings/some-keyring/cryptoKeys/some-kek-1",
)

df = (
    Pseudonymize.from_polars(df)
    .on_fields("fornavn")
    .with_default_encryption(custom_key="1234567890") # Note that the custom key has to be the same as "primaryKeyId" in the custom keyset
    .run(custom_keyset=custom_keyset)
    .to_polars()
)

Pseudonymize using custom rules

Instead of declaring the pseudonymization rules via the Pseudonymize functions, one can define the rules manually. This can be done via the PseudoRule class like this:

from dapla_pseudo import Pseudonymize, PseudoRule

rule_json = {
    'name': 'my-fule',
     'pattern': '**/identifiers/*',
     'func': 'redact(placeholder=#)' # This is a shorthand representation of the redact function
}

rule = PseudoRule.from_json(rule_json)

df = (
    Pseudonymize.from_polars(df)
    .add_rules(rule) # Add to pseudonymization rules
    .run()
    .to_polars()
)

Pseudonymization rules can also be read from file. This is especially handy when there are several rules, or if you prefer to store and maintain pseudonymization rules externally. For example:

from dapla_pseudo import PseudoRule
import json

with open("pseudo-rules.json", 'r') as rules_file:
    rules_json = json.load(rules_file)

pseudo_rules = [PseudoRule.from_json(rule) for rule in rules_json]

df = (
    Pseudonymize.from_polars(df)
    .add_rules(pseudo_rules)
    .run()
    .to_polars()
)

Depseudonymize

The "Depseudonymize" functions are almost exactly the same as when pseudonymizing. User can map from Stable ID back to FNR.

from dapla_pseudo import Depseudonymize
import polars as pl

file_path="data/personer_pseudonymized.csv"
dtypes = {"fnr": pl.Utf8, "fornavn": pl.Utf8, "etternavn": pl.Utf8, "kjonn": pl.Categorical, "fodselsdato": pl.Utf8}
df = pl.read_csv(file_path, dtypes=dtypes) # Create DataFrame from file

# Example: Single field default encryption (DAEAD)
result_df = (
    Depseudonymize.from_polars(df)                 # Specify what dataframe to use
    .on_fields("fornavn")                          # Select the field to depseudonymize
    .with_default_encryption()                     # Select the depseudonymization algorithm to apply
    .run()                                         # Apply depseudonymization to the selected field
    .to_polars()                                   # Get the result as a polars dataframe
)

# Example: Multiple fields default encryption (DAEAD)
result_df = (
    Depseudonymize.from_polars(df)                 # Specify what dataframe to use
    .on_fields("fornavn", "etternavn")             # Select multiple fields to depseudonymize
    .with_default_encryption()                     # Select the depseudonymization algorithm to apply
    .run()                                         # Apply depseudonymization to the selected fields
    .to_polars()                                   # Get the result as a polars dataframe
)

# Example: Depseudonymize Fnr field with SID mapping
result_df = (
    Depseudonymize.from_polars(df)                 # Specify what dataframe to use
    .on_fields("fnr")                              # Select fnr field to depseudonymize
    .with_stable_id()                              # Select the depseudonymization method (SID mapping) to apply
    .run()                                         # Apply depseudonymization to the selected fields
    .to_polars()                                   # Get the result as a polars dataframe
)

Note that depseudonymization requires elevated access privileges.

Repseudonymize

Repseudonymize can either 1) Change the algorithm used to pseudonymize, and/or 2) change the key used in pseudonymization, while keeping the algorithm.

# Example: Repseudonymize from PAPIS-compatible encryption to Stable ID
result_df = (
    Repseudonymize.from_polars(df)                 # Specify what dataframe to use
    .on_fields("fnr")                              # Select the field to pseudonymize
    .from_papis_compatible_encryption()            # Select the pseudonymization algorithm previously used
    .to_stable_id()                                # Select the new pseudonymization rule
    .run()                                         # Apply pseudonymization to the selected field
    .to_polars()                                   # Get the result as a polars dataframe
)
# Example: Repseudonymize with the same algorithm, but with a different key
result_df = (
    Repseudonymize.from_polars(df)                     # Specify what dataframe to use
    .on_fields("fnr")                                  # Select the field to pseudonymize
    .from_papis_compatible_encryption()                # Select the pseudonymization algorithm previously used
    .to_papis_compatible_encryption(key_id="some-key") # Select the new pseudonymization rule
    .run()                                             # Apply pseudonymization to the selected field
    .to_polars()                                       # Get the result as a polars dataframe
)

Datadoc

Datadoc metadata is gathered while pseudonymizing, and can be seen like so:

result = (
    Pseudonymize.from_polars(df)
    .on_fields("fornavn")
    .with_default_encryption()
    .run()
)

print(result.datadoc)

Datadoc metadata is automatically written to the folder or bucket as the pseudonymized data, when using the to_file() method on the result object. The metadata file has the suffix __DOC, and is always a .json file. The data and metadata is written to the file like so:

result = (
    Pseudonymize.from_polars(df)
    .on_fields("fornavn")
    .with_default_encryption()
    .run()
)

# The line of code below also writes the file "gs://bucket/test__DOC.json"
result.to_file("gs://bucket/test.parquet")

Note that if you choose to only use the DataFrame from the result, the metadata will be lost forever! An example of how this can happen:

import dapla as dp
result = (
    Pseudonymize.from_polars(df)
    .on_fields("fornavn")
    .with_default_encryption()
    .run()
)
df = result.to_pandas()

dp.write_pandas(df, "gs://bucket/test.parquet", file_format="parquet") # The metadata is lost!!

Requirements

  • Python >= 3.10
  • Dependencies can be found in pyproject.toml

Installation

You can install Dapla Toolbelt Pseudo via pip from PyPI:

pip install dapla-toolbelt-pseudo

Usage

Please see the Reference Guide for details.

Contributing

Contributions are very welcome. To learn more, see the Contributor Guide.

License

Distributed under the terms of the MIT license, Dapla Toolbelt Pseudo is free and open source software.

Issues

If you encounter any problems, please file an issue along with a detailed description.

Credits

This project was generated from Statistics Norway's SSB PyPI Template.