Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

using lang8 source data for training and testing instead of preproces… #1

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
101 changes: 25 additions & 76 deletions nlc_data.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,12 +18,9 @@
from __future__ import division
from __future__ import print_function

import gzip
import os
import re
import tarfile

from six.moves import urllib

from tensorflow.python.platform import gfile

Expand All @@ -43,65 +40,6 @@
_WORD_SPLIT = re.compile(b"([.,!?\"':;)(])")
_DIGIT_RE = re.compile(br"\d")

# URLs for WMT data.
_NLC_TRAIN_URL = "http://neuron.stanford.edu/nlc/nlc-train.tar"
_NLC_DEV_URL = "http://neuron.stanford.edu/nlc/nlc-valid.tar"


def maybe_download(directory, filename, url):
"""Download filename from url unless it's already in directory."""
if not os.path.exists(directory):
print("Creating directory %s" % directory)
os.mkdir(directory)
filepath = os.path.join(directory, filename)
if not os.path.exists(filepath):
print("Downloading %s to %s" % (url, filepath))
filepath, _ = urllib.request.urlretrieve(url, filepath)
statinfo = os.stat(filepath)
print("Succesfully downloaded", filename, statinfo.st_size, "bytes")
return filepath


def gunzip_file(gz_path, new_path):
"""Unzips from gz_path into new_path."""
print("Unpacking %s to %s" % (gz_path, new_path))
with gzip.open(gz_path, "rb") as gz_file:
with open(new_path, "wb") as new_file:
for line in gz_file:
new_file.write(line)


def get_nlc_train_set(directory):
"""Download the NLC training corpus to directory unless it's there."""
train_path = os.path.join(directory, "train")
print (train_path + ".x.txt")
print (train_path + ".y.txt")
if not (gfile.Exists(train_path +".x.txt") and gfile.Exists(train_path +".y.txt")):
corpus_file = maybe_download(directory, "nlc-train.tar",
_NLC_TRAIN_URL)
print("Extracting tar file %s" % corpus_file)
with tarfile.open(corpus_file, "r") as corpus_tar:
corpus_tar.extractall(directory)
return train_path


def get_nlc_dev_set(directory):
"""Download the NLC training corpus to directory unless it's there."""
dev_name = "valid"
dev_path = os.path.join(directory, dev_name)
if not (gfile.Exists(dev_path + ".y.txt") and gfile.Exists(dev_path + ".x.txt")):
dev_file = maybe_download(directory, "nlc-valid.tar", _NLC_DEV_URL)
print("Extracting tgz file %s" % dev_file)
with tarfile.open(dev_file, "r") as dev_tar:
y_dev_file = dev_tar.getmember(dev_name + ".y.txt")
x_dev_file = dev_tar.getmember(dev_name + ".x.txt")
y_dev_file.name = dev_name + ".y.txt" # Extract without "dev/" prefix.
x_dev_file.name = dev_name + ".x.txt"
dev_tar.extract(y_dev_file, directory)
dev_tar.extract(x_dev_file, directory)
return dev_path


def basic_tokenizer(sentence):
"""Very basic tokenizer: split the sentence into a list of tokens."""
words = []
Expand Down Expand Up @@ -244,6 +182,16 @@ def data_to_token_ids(data_path, target_path, vocabulary_path,
normalize_digits)
tokens_file.write(" ".join([str(tok) for tok in token_ids]) + "\n")

def maybe_download_lang8_data(lang8_dir):
#TODO download if missing
# import process_lang8
# process_lang8.process_data(lang8_dir, 'train', 0.01)
# process_lang8.process_data(lang8_dir, 'test')
train_path = os.path.join(lang8_dir, 'entries.train')
dev_path = os.path.join(lang8_dir, 'entries.dev')
test_path = os.path.join(lang8_dir, 'entries.test')
return train_path, dev_path, test_path


def prepare_nlc_data(data_dir, x_vocabulary_size, y_vocabulary_size, tokenizer=char_tokenizer):
"""Get NLC data into data_dir, create vocabularies and tokenize data.
Expand All @@ -265,27 +213,28 @@ def prepare_nlc_data(data_dir, x_vocabulary_size, y_vocabulary_size, tokenizer=c
(6) path to the French vocabulary file.
"""
# Get nlc data to the specified directory.
train_path = get_nlc_train_set(data_dir)
dev_path = get_nlc_dev_set(data_dir)
train_path, dev_path, _ = maybe_download_lang8_data(data_dir)

# Create vocabularies of the appropriate sizes.
y_vocab_path = os.path.join(data_dir, "vocab%d.y" % y_vocabulary_size)
x_vocab_path = os.path.join(data_dir, "vocab%d.x" % x_vocabulary_size)
create_vocabulary(y_vocab_path, train_path + ".y.txt", y_vocabulary_size, tokenizer)
create_vocabulary(x_vocab_path, train_path + ".x.txt", x_vocabulary_size, tokenizer)
y_vocab_path = os.path.join(data_dir, "vocab%d.corrected" % y_vocabulary_size)
x_vocab_path = os.path.join(data_dir, "vocab%d.original" % x_vocabulary_size)
create_vocabulary(y_vocab_path, train_path + ".corrected", y_vocabulary_size, tokenizer)
create_vocabulary(x_vocab_path, train_path + ".original", x_vocabulary_size, tokenizer)

# Create token ids for the training data.
y_train_ids_path = train_path + (".ids%d.y" % y_vocabulary_size)
x_train_ids_path = train_path + (".ids%d.x" % x_vocabulary_size)
data_to_token_ids(train_path + ".y.txt", y_train_ids_path, y_vocab_path, tokenizer)
data_to_token_ids(train_path + ".x.txt", x_train_ids_path, x_vocab_path, tokenizer)
y_train_ids_path = train_path + (".ids%d.corrected" % y_vocabulary_size)
x_train_ids_path = train_path + (".ids%d.original" % x_vocabulary_size)
data_to_token_ids(train_path + ".corrected", y_train_ids_path, y_vocab_path, tokenizer)
data_to_token_ids(train_path + ".original", x_train_ids_path, x_vocab_path, tokenizer)

# Create token ids for the development data.
y_dev_ids_path = dev_path + (".ids%d.y" % y_vocabulary_size)
x_dev_ids_path = dev_path + (".ids%d.x" % x_vocabulary_size)
data_to_token_ids(dev_path + ".y.txt", y_dev_ids_path, y_vocab_path, tokenizer)
data_to_token_ids(dev_path + ".x.txt", x_dev_ids_path, x_vocab_path, tokenizer)
y_dev_ids_path = dev_path + (".ids%d.corrected" % y_vocabulary_size)
x_dev_ids_path = dev_path + (".ids%d.original" % x_vocabulary_size)
data_to_token_ids(dev_path + ".corrected", y_dev_ids_path, y_vocab_path, tokenizer)
data_to_token_ids(dev_path + ".original", x_dev_ids_path, x_vocab_path, tokenizer)

return (x_train_ids_path, y_train_ids_path,
x_dev_ids_path, y_dev_ids_path,
x_vocab_path, y_vocab_path)


76 changes: 76 additions & 0 deletions process_lang8.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,76 @@
import random
import argparse
from os.path import join as pjoin

'''
convert lang8 corpus into 2 text files containing parallel verb phrases
(original and corrected).

about half the examples don't have corrections; can either ignore or add those as identity mappings

currently doesn't do additional preprocessing besides that done by tajiri et al.
'''

def parse_entries(lines):
par_count = 0
original = list()
corrected = list()
for line in lines:
cols = line.split('\t')
if len(cols) < 6:
continue
else:
# NOTE prints examples with multiple corrections
#if len(cols) > 6:
#print(' ||| '.join(cols[4:]))
# NOTE not using multiple corrections to avoid train and dev having same source sentences
for corr_sent in cols[5:6]:
if cols[4] == corr_sent:
continue
original.append(cols[4])
corrected.append(corr_sent)
par_count += 1
print('%d parallel examples' % par_count)
return original, corrected

def write_text(split, data, part, lang8_path):
with open(pjoin(lang8_path, 'entries.%s.%s' % (split, part)), 'w') as fout:
fout.write('\n'.join(data))

def process_data(lang8_path, split, dev_split_fract):
with open(pjoin(lang8_path, 'entries.%s' % split)) as fin:
lines = fin.read().strip().split('\n')
print('%d lines total in %s split' % (len(lines), args.split))
Copy link

@aBit19 aBit19 Apr 17, 2017

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The args variable is not defined in the process_data method, only in main.
see line 43. Apart from that the process_lang8.py seems to work just fine. 👍

original, corrected = parse_entries(lines)

# shuffle
random.seed(1234)
combined = zip(original, corrected)
random.shuffle(combined)
original, corrected = zip(*combined)

if split == 'train':
ntrain = int(len(combined) * (1 - dev_split_fract))
train_original, train_corrected = original[:ntrain], corrected[:ntrain]
dev_original, dev_corrected = original[ntrain:], corrected[ntrain:]
print('writing %d training examples, %d dev examples' %\
(ntrain, len(combined) - ntrain))
write_text('train', train_original, 'original', lang8_path)
write_text('train', train_corrected, 'corrected', lang8_path)
write_text('dev', dev_original, 'original', lang8_path)
write_text('dev', dev_corrected, 'corrected', lang8_path)
else:
write_text('test', original, 'original', lang8_path)
write_text('test', corrected, 'corrected', lang8_path)

def main():
parser = argparse.ArgumentParser()
parser.add_argument('lang8_path', help='path to directory containing lang-8 entries.[split] files')
parser.add_argument('split', type=str, help='split to use, train refers to entries.train before creating dev split', choices=['train', 'test'])
parser.add_argument('--dev_split_fract', default=0.01, type=float, help='fraction of training data to use for dev, split (e.g. 0.01)')
args = parser.parse_args()

process_data(args.lang8_path, args.split, args.dev_split_fract)

if __name__ == '__main__':
main()