Skip to content

Commit

Permalink
Lecture 3
Browse files Browse the repository at this point in the history
Third lecture proposed exercises
  • Loading branch information
srodrb committed Oct 8, 2014
1 parent 1799314 commit 08a27c8
Show file tree
Hide file tree
Showing 13 changed files with 1,646 additions and 0 deletions.
360 changes: 360 additions & 0 deletions Lecture 2/.Rhistory
Original file line number Diff line number Diff line change
@@ -0,0 +1,360 @@
library( RNetCDF )
library( ncdf )
pwd
help?
directory
setwd("/Users/samuel/")
3+3
3+3
# this is just an example
pi
? help
? mean
whiteside
library(MASS)
whiteside
top(whiteside)
head(whiteside)
names( whiteside)
summary( whiteside)
summary( whiteside[,1])
1970:1970
1970:1979
array = c( 1970:1979)
array
# create a vector
x = 1:100
y = sin(x)
plot( x ~ y)
plot( y ~ x)
plot( y ~ x, line)
? plot
plot( y ~ x, "l")
plot( y ~ x, type="l")
x = 1:1000
y = sin(x)
plot( x ~ y , type="l")
plot( y ~ x , type="l")
plot( y ~ x , type="p")
plot( y ~ x , type="")
plot( y ~ x , type="l")
plot( y ~ x , type="p")
help(array)
source("http://bioconductor.org/biocLite.R")
?BiocUpgrade
biocLite("BiocUpgrade")
y
y
install.packages("biomaRt")
biocLite()
biocLite("biomaRt")
choosebank()
library("seqinr")
choosebank()
choosebank("genbank")
query("BRCA1", "SP=Homo sapiens AND K=BRCA1")
library("seqinr")
choosebank("genbank")
query("BRCA1", "SP=Homo sapiens AND K=BRCA1")
attributes(BRCA1)
BRCA1$req
query("BRCA1", "SP=Homo sapiens AND AC=U61268")
myseq <- getSequence(BRCA1$req[[1]])
myseq
dotPlot( myseq, myseq)
length( myseq)
BRCA.variant1 <- getSequence(BRCA1$req[[1]])
length( BRCA.variant1)
query(listname = "BRCA1", query="SP=homo sapiens AND K=BRCA1")
BRCA.variant2 <- getSequence(BRCA1$req[[1]])
setwd("~/Google Drive/MSc MSE/Visualization and data modelling/GitHubCode/Lecture 2")
# Exercise 1: download the example2.txt file
# disclaimer: the data should be in the current directory to run this file
# Exercise 2: Read this data into R
data = read.table( "example2.txt", header=TRUE)
# Exercise 3: Print out the data for cases 10 to 18
data[10:18, ]
data
data[, 2]
data[c(23,2,5), 2]
summary( data)
tapply( data, mean)
tapply( data$1, mean)
tapply( data$yrs, mean)
tapply( data[,1], mean)
lapply( data, mean)
lapply( data, c(mean, sum)
)
lapply( data, mean)
sapply( data, mean)
sapply( data, min)
sapply( data, max)
sapply( data, c(max,min,mean)
)
sapply( data, sd)
customizedFunction <- function(x) {
c(min = min(x), mean = mean(x), max = max(x), sd = sd(x))
}
sapply( data, customizedFunction)
c(min = min(x), mean = mean(x), max = max(x), Deviation = sd(x))
}
sapply( data, customizedFunction)
customizedFunction <- function(x) {
c(min = min(x), mean = mean(x), max = max(x), Deviation = sd(x))
}
sapply( data, customizedFunction)
source('~/.active-rstudio-document', echo=TRUE)
random.numbers <- sample( runif( 100, min=0, max=2), size=100, replace=F)
hist ( random.numbers )
# Exercise 2: Use dt to evaluate the density function of the t distribution with 13 degrees
# of freedom at 20 values in the range -1 to 1.
density <- dt( x=seq(-1,1,len=20), df=13)
plot( density )
# Exercise 3: Find P[X <= x] = 0.01 for a t distribution with 9 degrees of freedom.
# pt calculates the cumulative distribution function, P( X <= x)
# the function X is the t distribution with 9 degrees of freedom.
# x = 0.01
pt( 0.01, df=9)
# Exercise 4: IQ scores are known to have a normal distribution with mean 100 and
# standard deviation 15. What IQ would you have if you were in the 80th
min( IQ[ IQ > (0.9 * max(IQ))])
IQ <- rnorm(1000, mean=100, sd=15)
quantile( IQ, 0.8) # We apply the quantile function to compute the percentiles
# we can check graphically the result:
plot( IQ )
abline( a=quantile(IQ, 0.8), b=0, col="red", lwd=2, lty="longdash")
# Exercise 5: What IQ would you have if you were in the top 10 percent?
min( IQ[ IQ > (0.9 * max(IQ))])
IQ
max(IQ)
density <- dt( x=seq(-1,1,len=20), df=13)
plot( density )
pnorm( 0.9)
pnorm( 0.9:1.0)
pnorm( 1.0)
x = seq( -1, 1, length=100)
x
hx = dnorm( x )
plot( hx, x)
plot( x, hx)
px = pnorm( x )
plot( x, px)
hx = dnorm( x ); plot( x, hx)
px = pnorm( x ); plot( x, px)
x <- seq(-4,4,length=100)*sd + mean
hx <- dnorm(x,mean,sd)
IQ <- dnorm(1000, mean=100, sd=15)
quantile( IQ, 0.8) # We apply the quantile function to compute the percentiles
IQ <- rnorm(1000, mean=100, sd=15)
quantile( IQ, 0.8) # We apply the quantile function to compute the percentiles
mean <- 100
sd <- 15
IQ <- seq( -1, 1, length=100)*sd + mean
dIQ <- dnorm(IQ, mean = mean, sd = sd)
plot( IQ, dIQ)
mean <- 100
sd <- 15
IQ <- seq( -1, 1, length=100)*sd + mean
dIQ <- dnorm(IQ, mean = mean, sd = sd)
plot( IQ, dIQ)
IQ <- seq( -4, 4, length=100)*sd + mean
dIQ <- dnorm(IQ, mean = mean, sd = sd)
plot( IQ, dIQ)
# percentile?
mean <- 100
sd <- 15
IQ <- seq( -4, 4, length=100)*sd + mean
dIQ <- dnorm(IQ, mean = mean, sd = sd)
plot( IQ, dIQ)
quantile( dIQ, 0.8)
quantile( IQ, 0.8)
quantile( IQ, 0.8, lty="longdash")
plot( IQ, dIQ, lty="longdash")
plot( IQ, dIQ)
quantile( IQ, 0.8)
# we can check graphically the result:
plot( IQ )
abline( a=quantile(IQ, 0.8), b=0, col="red", lwd=2, lty="longdash")
plot( IQ )
abline( a=quantile(IQ, 0.8), b=0, col="red", lwd=2, lty="longdash")
abline( a=0, b=80, col="red", lwd=2, lty="longdash")
plot( IQ )
#abline( a=quantile(IQ, 0.8), b=0, col="red", lwd=2, lty="longdash")
points( x=80, y=(quantile(IQ, 0.8)))
points( x=80, y=(quantile(IQ, 0.8)), pch=23)
plot( IQ )
#abline( a=quantile(IQ, 0.8), b=0, col="red", lwd=2, lty="longdash")
points( x=80, y=(quantile(IQ, 0.8)), pch=23)
plot( IQ, dIQ)
quantile( IQ, 0.8)
# we can check graphically the result:
plot( IQ )
#abline( a=quantile(IQ, 0.8), b=0, col="red", lwd=2, lty="longdash")
points( x=80, y=(quantile(IQ, 0.8)), pch=23)
plot( IQ, type='l' )
#abline( a=quantile(IQ, 0.8), b=0, col="red", lwd=2, lty="longdash")
points( x=80, y=(quantile(IQ, 0.8)), pch=23)
plot( IQ, type='l', lty="longdash")
#abline( a=quantile(IQ, 0.8), b=0, col="red", lwd=2, lty="longdash")
points( x=80, y=(quantile(IQ, 0.8)), pch=23)
plot( IQ, type='l', lty="longdash")
points( x=80, y=result, pch=23)
text( x=80, y=result, "El resultado")
result <- quantile( IQ, 0.8)
# we can check graphically the result:
plot( IQ, type='l', lty="longdash")
points( x=80, y=result, pch=23)
text( x=80, y=result, "El resultado")
text( x=80, y=result, "El resultado", offset=0.5)
plot( IQ, type='l', lty="longdash")
points( x=80, y=result, pch=23)
text( x=80, y=result, "El resultado", offset=0.5)
plot( IQ, type='l', lty="longdash")
points( x=80, y=result, pch=23)
string = 'hola'
text( x=80, y=result, string, offset=0.5)
string = 'Hola ' + 20
string = 'Hola ' + as.string(20)
string = 'Hola %d', 10
string = 'Hola ' + ' adios'
string = c('Hola ',' adios')
text( x=80, y=result, string, offset=0.5)
plot( IQ, type='l', lty="longdash")
points( x=80, y=result, pch=23)
string = c('Hola ',' adios')
text( x=80, y=result, string, offset=0.5)
string = c('Hola ',' adios')
string
string = as.character( c('Hola ',' adios'))
string
string = paste('Hola ',' adios')
string
string = paste('Hola ','adios')
string
string = paste('Hola ',20)
string
string = paste( 80, result)
string
string = paste( '(',80,',', result,')')
string
string = paste( '(', 80 ,',', result,')')
string
text( x=80, y=result, string, offset=0.5)
text( x=80, y=result, string, offset=0.5, cex=0.6)
plot( IQ, type='l', lty="longdash")
points( x=80, y=result, pch=23)
string = paste( '(', 80 ,',', result,')')
string
text( x=80, y=result, string, offset=0.5, cex=0.6)
text( x=85, y=result, string, offset=0.5, cex=0.6)
plot( IQ, type='l', lty="longdash")
points( x=80, y=result, pch=23)
string = paste( '(', 80 ,',', result,')')
string
text( x=85, y=result, string, offset=0.5, cex=0.6)
plot( IQ, type='l', lty="longdash")
points( x=80, y=result, pch=23)
string = paste( '(', 80 ,',', result,')')
string
text( x=88, y=result, string, offset=0.5, cex=0.6)
plot( IQ, type='l', lty="longdash")
points( x=80, y=result, pch=23)
string = paste( '(', 80 ,',', result,')')
string
text( x=88, y=result, string, offset=0.5, cex=0.6)
min(IQ)
max(IQ)
0.9*max(IQ)
0.9*(max(IQ) - min(IQ))
mean <- 100
sd <- 15
IQ <- seq( -4, 4, length=100)*sd + mean
dIQ <- dnorm(IQ, mean = mean, sd = sd)
plot( IQ, dIQ)
0.9*(max(IQ) - min(IQ)) + min(IQ)
p <- 0.9*(max(IQ) - min(IQ)) + min(IQ)
min( IQ[ IQ > p])
p <- 0.9*(max(IQ) - min(IQ)) + min(IQ)
sprintf("Answer %.2f", p)
answer <- pt( 0.01, df=9)
sprintf("Answer %.2f", answer)
pnorm(142, mean=mean, sd=sd)
1 - pnorm(142, mean=mean, sd=sd)
sprintf("Answer %.2f", answer)
answer <- (1 - pnorm(142, mean=mean, sd=sd))
sprintf("Answer %.2f", answer)
sprintf("Answer %.6f", answer)
sprintf("Answer %.6f %", answer)
sprintf("Answer %.6f '%'", answer)
set.seed(144)
values = runif( 100, min=0, max=2)
random.numbers <- sample( values, size=20, replace=F)
set.seed(144)
values = runif( 100, min=0, max=2)
set1 <- sample( values, size=20, replace=F)
set2 <- sample( values, size=20, replace=F)
set1
set2
set.seed(0)
set1 <- rnorm(n=10, mean = 100, sd=15)
set2 <- rnorm(n=10, mean = 100, sd=15)
set1
set2
set.seed(0)
set1 <- rnorm(n=20, mean = 100, sd=15)
set2 <- rnorm(n=20, mean = 100, sd=15)
set1
set2
set.seed(48639158)
set1 <- rnorm(n=20, mean = 100, sd=15)
set2 <- rnorm(n=20, mean = 100, sd=15)
set1
set2
set.seed(0)
set1 <- rnorm(n=20, mean = 100, sd=15)
set2 <- rnorm(n=20, mean = 100, sd=15)
sprintf("First pair of samples")
set1
set2
set.seed(48639158)
set1 <- rnorm(n=20, mean = 100, sd=15)
set2 <- rnorm(n=20, mean = 100, sd=15)
sprintf("Second pair of samples")
set1
set2
mean <- 100
sd <- 15
IQ <- seq( -4, 4, length=100)*sd + mean
dIQ <- dnorm(IQ, mean = mean, sd = sd)
plot( IQ, dIQ)
result <- quantile( IQ, 0.8)
sprintf("Answer %.2f", result)
IQ <- seq( -4, 4, length=100)
dIQ <- dnorm(IQ, mean = mean, sd = sd)
plot( IQ, dIQ)
result <- quantile( IQ, 0.8)
mean <- 100
sd <- 15
IQ <- seq( -4, 4, length=100)*sd + mean
dIQ <- dnorm(IQ, mean = mean, sd = sd)
plot( IQ, dIQ)
result <- quantile( IQ, 0.8)
mean <- 100
sd <- 15
IQ <- seq( -4, 4, length=100)*sd + mean
dIQ <- dnorm(IQ, mean = mean, sd = sd)
plot( IQ, dIQ)
result <- quantile( IQ, 0.8)
sprintf("Answer %.2f", result)
foo <- function(x, ...){}
foo <- function(x, ...){}
foo <- function(x, ...){
}
foo <- function(x, ...)
{
ans <- rnorm(x, ...)
}
x = 10
plot( x, foo(x))
plot(foo(x))
plot(foo(x, 100, 15))
Loading

0 comments on commit 08a27c8

Please sign in to comment.