Skip to content

Fix problem with VectorStoreChatMemoryAdvisor using pgvector #1305

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Sep 5, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -87,8 +87,7 @@ public AdvisedRequest adviseRequest(AdvisedRequest request, Map<String, Object>

var searchRequest = SearchRequest.query(request.userText())
.withTopK(this.doGetChatMemoryRetrieveSize(context))
.withFilterExpression(
"'" + DOCUMENT_METADATA_CONVERSATION_ID + "'=='" + this.doGetConversationId(context) + "'");
.withFilterExpression(DOCUMENT_METADATA_CONVERSATION_ID + "=='" + this.doGetConversationId(context) + "'");

List<Document> documents = this.getChatMemoryStore().similaritySearch(searchRequest);

Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,145 @@
/*
* Copyright 2023 - 2024 the original author or authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.springframework.ai.vectorstore;

import org.jetbrains.annotations.NotNull;
import org.junit.jupiter.api.Assertions;
import org.junit.jupiter.api.DisplayName;
import org.junit.jupiter.api.Test;
import org.mockito.ArgumentCaptor;
import org.postgresql.ds.PGSimpleDataSource;
import org.springframework.ai.chat.client.ChatClient;
import org.springframework.ai.chat.client.advisor.VectorStoreChatMemoryAdvisor;
import org.springframework.ai.chat.messages.AssistantMessage;
import org.springframework.ai.chat.messages.SystemMessage;
import org.springframework.ai.chat.model.ChatModel;
import org.springframework.ai.chat.model.ChatResponse;
import org.springframework.ai.chat.model.Generation;
import org.springframework.ai.chat.prompt.Prompt;
import org.springframework.ai.document.Document;
import org.springframework.ai.embedding.EmbeddingModel;
import org.springframework.jdbc.core.JdbcTemplate;
import org.testcontainers.containers.PostgreSQLContainer;
import org.testcontainers.junit.jupiter.Container;
import org.testcontainers.junit.jupiter.Testcontainers;

import java.util.List;
import java.util.Map;

import static org.assertj.core.api.Assertions.assertThat;
import static org.mockito.Mockito.*;

/**
* @author Fabian Krüger
*/
@Testcontainers
class PgVectorStoreWithChatMemoryAdvisorIT {

float[] embed = { 0.003961659F, -0.0073295482F, 0.02663665F };

@Container
@SuppressWarnings("resource")
static PostgreSQLContainer<?> postgresContainer = new PostgreSQLContainer<>("pgvector/pgvector:pg16")
.withUsername("postgres")
.withPassword("postgres");

/**
* Test that chats with {@link VectorStoreChatMemoryAdvisor} get advised with similar
* messages from the (gp)vector store.
*/
@Test
@DisplayName("Advised chat should have similar messages from vector store")
void advisedChatShouldHaveSimilarMessagesFromVectorStore() throws Exception {
// faked ChatModel
ChatModel chatModel = chatModelAlwaysReturnsTheSameReply();
// faked embedding model
EmbeddingModel embeddingModel = embeddingNModelShouldAlwaysReturnFakedEmbed();
PgVectorStore store = createPgVectorStoreUsingTestcontainer(embeddingModel);

// do the chat
ChatClient.builder(chatModel)
.build()
.prompt()
.user("joke")
.advisors(new VectorStoreChatMemoryAdvisor(store))
.call()
.chatResponse();

verifyRequestHasBeenAdvisedWithMessagesFromVectorStore(chatModel);
}

private static @NotNull ChatModel chatModelAlwaysReturnsTheSameReply() {
ChatModel chatModel = mock(ChatModel.class);
ArgumentCaptor<Prompt> argumentCaptor = ArgumentCaptor.forClass(Prompt.class);
ChatResponse chatResponse = new ChatResponse(List.of(new Generation(new AssistantMessage("""
Why don't scientists trust atoms?
Because they make up everything!
"""))));
when(chatModel.call(argumentCaptor.capture())).thenReturn(chatResponse);
return chatModel;
}

private static void initStore(PgVectorStore store) throws Exception {
store.afterPropertiesSet();
// fill the store
store.add(List.of(new Document("Tell me a good joke", Map.of("conversationId", "default")),
new Document("Tell me a bad joke", Map.of("conversationId", "default", "messageType", "USER"))));
}

private static PgVectorStore createPgVectorStoreUsingTestcontainer(EmbeddingModel embeddingModel) throws Exception {
JdbcTemplate jdbcTemplate = createJdbcTemplateWithConnectionToTestcontainer();
PgVectorStore vectorStore = new PgVectorStore.Builder(jdbcTemplate, embeddingModel).withDimensions(3) // match
// embeddings
.withInitializeSchema(true)
.build();
initStore(vectorStore);
return vectorStore;
}

private static @NotNull JdbcTemplate createJdbcTemplateWithConnectionToTestcontainer() {
PGSimpleDataSource ds = new PGSimpleDataSource();
ds.setUrl("jdbc:postgresql://localhost:" + postgresContainer.getMappedPort(5432) + "/postgres");
ds.setUser(postgresContainer.getUsername());
ds.setPassword(postgresContainer.getPassword());
return new JdbcTemplate(ds);
}

private @NotNull EmbeddingModel embeddingNModelShouldAlwaysReturnFakedEmbed() {
EmbeddingModel embeddingModel = mock(EmbeddingModel.class);
when(embeddingModel.embed(any(Document.class))).thenReturn(embed);
when(embeddingModel.embed(any(String.class))).thenReturn(embed);
return embeddingModel;
}

private static void verifyRequestHasBeenAdvisedWithMessagesFromVectorStore(ChatModel chatModel) {
ArgumentCaptor<Prompt> promptCaptor = ArgumentCaptor.forClass(Prompt.class);
verify(chatModel).call(promptCaptor.capture());
assertThat(promptCaptor.getValue().getInstructions().get(0)).isInstanceOf(SystemMessage.class);
assertThat(promptCaptor.getValue().getInstructions().get(0).getContent()).isEqualTo("""


Use the long term conversation memory from the LONG_TERM_MEMORY section to provide accurate answers.

---------------------
LONG_TERM_MEMORY:
Tell me a good joke
Tell me a bad joke
---------------------

""");
}

}