Skip to content

PyTorch Implementation for SoftTriple Loss

License

Notifications You must be signed in to change notification settings

sphinx-xu/SoftTriple

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SoftTriple Loss

PyTorch Implementation for Our ICCV'19 Paper: "SoftTriple Loss: Deep Metric Learning Without Triplet Sampling"

Usage: Train on Cars196

Here is an example of using this package.

  1. Obtain dataset
wget http://imagenet.stanford.edu/internal/car196/car_ims.tgz
tar -xf car_ims.tgz
  1. Generate train/test sets
python genCars.py
  1. Learn 64-dimensional embeddings
python train.py --gpu 0 --dim 64 -C 98 --freeze_BN [folder with train and test folders]

Requirements

  • Python 3.7
  • PyTorch 1.1
  • scikit-learn 0.20.1

Citation

If you use the package in your research, please cite our paper:

@inproceedings{qian2019striple,
  author    = {Qi Qian and
               Lei Shang and
               Baigui Sun and
               Juhua Hu and
               Hao Li and
               Rong Jin},
  title     = {SoftTriple Loss: Deep Metric Learning Without Triplet Sampling},
  booktitle = {{IEEE} International Conference on Computer Vision, {ICCV} 2019},
  year      = {2019}
}

About

PyTorch Implementation for SoftTriple Loss

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%