Skip to content

soltesz-lab/dentate

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Installation

  1. Core software libraries

HDF5 (parallel build) MPICH

  1. Python package prerequisites
pip install numpy scipy mpi4py h5py matplotlib 
  1. Building and installing NEURON
git clone https://github.com/neuronsimulator/nrn.git
cd nrn
mkdir build
cd build
cmake .. -DNRN_ENABLE_INTERVIEWS=OFF -DNRN_ENABLE_MPI=ON -DNRN_ENABLE_RX3D=ON -DNRN_ENABLE_CORENEURON=ON -DNRN_ENABLE_PYTHON=ON -DCMAKE_C_COMPILER=mpicc -DCMAKE_CXX_COMPILER=mpicxx
make install
  1. Building and installing NeuroH5

The NeuroH5 build system requires cmake.

git clone https://github.com/soltesz-lab/neuroh5.git
cd neuroh5
CMAKE_BUILD_PARALLEL_LEVEL=8 pip install .
  1. Fetching source code
# Main dentate repository
git clone https://github.com/soltesz-lab/dentate.git

# Dentate granule cell repository
git clone https://github.com/soltesz-lab/dgc.git

Running the main network simulation script

export PYTHONPATH=$PWD;$PYTHONPATH # Must include directory containing dentate repository


results_path=./results
export results_path

mkdir -p $results_path

cd dentate
mpirun python ./scripts/main.py \ # Main network simulation script
    --config-file=Test_Slice_10um.yaml  \ # Configuration file
    --arena-id=A --trajectory-id=Diag \ # Arena and trajectory identifier for simulated spatial input
    --template-paths=../dgc/Mateos-Aparicio2014:templates \ # Must include directory with DGC template
    --dataset-prefix="datasets" \ # Directory with HDF5 datasets
    --results-path=$results_path \
    --io-size=4 \ # Number of ranks performing I/O operations
    --tstop=50 \ # Simulation end time
    --v-init=-75 \
    --checkpoint-interval=10 \ # Simuation time interval for saving simulation outputs
    --checkpoint-clear-data \ # Clear data from memory after saving
    --max-walltime-hours=1 \ # Maximum walltime allotted 
    --verbose

Example Configuration

File Test_Slice_10um.yaml

## Sample Model configuration of dentate gyrus network
Model Name: dentatenet
Dataset Name: Slice
Definitions: !include Definitions.yaml
Global Parameters: !include Global.yaml
Geometry: !include Geometry.yaml
Random Seeds: !include Random.yaml
Cell Data: DG_Test_Slice_10um_20200628.h5
Connection Data: DG_Test_Slice_10um_20200628.h5
#Gap Junction Data: DG_gapjunctions_20181228.h5
Connection Generator: !include Full_Scale_Connections_GC_Exc_Sat_DD.yaml
Stimulus: !include Input_Configuration.yaml
## Cell types for dentate gyrus model
Cell Types:
  GC:
    template: DGC
    template file: DGC_Template_minimal.hoc
    mechanism file: 20200219_DG_GC_excitability_synint_combined_gid_0_mech.yaml
    synapses:
      correct_for_spines: True
      density: !include GC_synapse_density.yaml
  MC:
    template: MossyCell
    synapses:
      density: !include MC_synapse_density.yaml
  HC:
    template: HIPPCell
    synapses:
      density: !include HC_synapse_density.yaml
  BC:
    template: BasketCell
    synapses:
      density: !include BC_synapse_density.yaml
  AAC:
    template: AxoAxonicCell
    synapses:
      density: !include AAC_synapse_density.yaml
  HCC:
    template: HICAPCell
    synapses: 
      density: !include HCC_synapse_density.yaml
  NGFC:
    template: NGFCell
    synapses:
      density: !include NGFC_synapse_density.yaml
  MOPP:
    template: MOPPCell
    synapses:
      density: !include NGFC_synapse_density.yaml
  IS:
    template: ISCell
    synapses:
      density: !include IS_synapse_density.yaml
  MPP:
    template: MPPCell
    spike train:
      namespace: Input Spikes
      attribute: Spike Train
  LPP:
    template: LPPCell
    spike train:
      namespace: Input Spikes
      attribute: Spike Train
  CA3c:
    template: CA3Cell
    spike train:
      namespace: Input Spikes
      attribute: Spike Train