Skip to content

smokingelephants/LLM_RAG_Tutorial

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

LLM-RAG Tutorial This repository contains a comprehensive tutorial on building a Retrieval-Augmented Generation (RAG) pipeline using Large Language Models (LLMs). The tutorial provides code examples, detailed explanations, and a streamlined approach to integrate LLMs with a retrieval system for improved response generation.

📚 Contents • notebooks/: Jupyter notebooks with step-by-step explanations. • data/: Example datasets used in the tutorial. • src/: Python modules for custom retrieval and generation components. • config/: Configuration files for model parameters and settings.

🚀 Getting Started Prerequisites • Python 3.10+ • transformers library • faiss or chromadb for the retrieval component Install dependencies using: pip install -r requirements.txt

Example The RAG pipeline combines a dense retriever (e.g., FAISS) with a generative model (e.g., OpenAI GPT). The example notebooks walk through:

  1. Indexing documents using FAISS/ChromaDB.
  2. Querying the indexed documents.
  3. Generating responses with an LLM using the retrieved context.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published