Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[MNT] update linting: limit line length to 88, add isort #1740

Merged
merged 4 commits into from
Dec 26, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
16 changes: 12 additions & 4 deletions build_tools/changelog.py
Original file line number Diff line number Diff line change
Expand Up @@ -62,7 +62,9 @@ def fetch_latest_release(): # noqa: D103
"""
import httpx

response = httpx.get(f"{GITHUB_REPOS}/{OWNER}/{REPO}/releases/latest", headers=HEADERS)
response = httpx.get(
f"{GITHUB_REPOS}/{OWNER}/{REPO}/releases/latest", headers=HEADERS
)

if response.status_code == 200:
return response.json()
Expand Down Expand Up @@ -91,7 +93,9 @@ def fetch_pull_requests_since_last_release() -> list[dict]:
all_pulls = []
while not is_exhausted:
pulls = fetch_merged_pull_requests(page=page)
all_pulls.extend([p for p in pulls if parser.parse(p["merged_at"]) > published_at])
all_pulls.extend(
[p for p in pulls if parser.parse(p["merged_at"]) > published_at]
)
is_exhausted = any(parser.parse(p["updated_at"]) < published_at for p in pulls)
page += 1
return all_pulls
Expand All @@ -101,7 +105,9 @@ def github_compare_tags(tag_left: str, tag_right: str = "HEAD"):
"""Compare commit between two tags."""
import httpx

response = httpx.get(f"{GITHUB_REPOS}/{OWNER}/{REPO}/compare/{tag_left}...{tag_right}")
response = httpx.get(
f"{GITHUB_REPOS}/{OWNER}/{REPO}/compare/{tag_left}...{tag_right}"
)
if response.status_code == 200:
return response.json()
else:
Expand Down Expand Up @@ -135,7 +141,9 @@ def assign_prs(prs, categs: list[dict[str, list[str]]]):
# if any(l.startswith("module") for l in pr_labels):
# print(i, pr_labels)

assigned["Other"] = list(set(range(len(prs))) - {i for _, j in assigned.items() for i in j})
assigned["Other"] = list(
set(range(len(prs))) - {i for _, j in assigned.items() for i in j}
)

return assigned

Expand Down
4 changes: 3 additions & 1 deletion docs/source/conf.py
Original file line number Diff line number Diff line change
Expand Up @@ -145,7 +145,9 @@ def setup(app: Sphinx):
"navbar_end": ["navbar-icon-links.html", "search-field.html"],
"show_nav_level": 2,
"header_links_before_dropdown": 10,
"external_links": [{"name": "GitHub", "url": "https://github.com/sktime/pytorch-forecasting"}],
"external_links": [
{"name": "GitHub", "url": "https://github.com/sktime/pytorch-forecasting"}
],
}

html_sidebars = {
Expand Down
12 changes: 9 additions & 3 deletions examples/ar.py
Original file line number Diff line number Diff line change
Expand Up @@ -51,14 +51,20 @@
stop_randomization=True,
)
batch_size = 64
train_dataloader = training.to_dataloader(train=True, batch_size=batch_size, num_workers=0)
val_dataloader = validation.to_dataloader(train=False, batch_size=batch_size, num_workers=0)
train_dataloader = training.to_dataloader(
train=True, batch_size=batch_size, num_workers=0
)
val_dataloader = validation.to_dataloader(
train=False, batch_size=batch_size, num_workers=0
)

# save datasets
training.save("training.pkl")
validation.save("validation.pkl")

early_stop_callback = EarlyStopping(monitor="val_loss", min_delta=1e-4, patience=5, verbose=False, mode="min")
early_stop_callback = EarlyStopping(
monitor="val_loss", min_delta=1e-4, patience=5, verbose=False, mode="min"
)
lr_logger = LearningRateMonitor()

trainer = pl.Trainer(
Expand Down
23 changes: 18 additions & 5 deletions examples/nbeats.py
Original file line number Diff line number Diff line change
Expand Up @@ -42,13 +42,21 @@
add_target_scales=False,
)

validation = TimeSeriesDataSet.from_dataset(training, data, min_prediction_idx=training_cutoff)
validation = TimeSeriesDataSet.from_dataset(
training, data, min_prediction_idx=training_cutoff
)
batch_size = 128
train_dataloader = training.to_dataloader(train=True, batch_size=batch_size, num_workers=2)
val_dataloader = validation.to_dataloader(train=False, batch_size=batch_size, num_workers=2)
train_dataloader = training.to_dataloader(
train=True, batch_size=batch_size, num_workers=2
)
val_dataloader = validation.to_dataloader(
train=False, batch_size=batch_size, num_workers=2
)


early_stop_callback = EarlyStopping(monitor="val_loss", min_delta=1e-4, patience=10, verbose=False, mode="min")
early_stop_callback = EarlyStopping(
monitor="val_loss", min_delta=1e-4, patience=10, verbose=False, mode="min"
)
trainer = pl.Trainer(
max_epochs=100,
accelerator="auto",
Expand All @@ -63,7 +71,12 @@


net = NBeats.from_dataset(
training, learning_rate=3e-2, log_interval=10, log_val_interval=1, log_gradient_flow=False, weight_decay=1e-2
training,
learning_rate=3e-2,
log_interval=10,
log_val_interval=1,
log_gradient_flow=False,
weight_decay=1e-2,
)
print(f"Number of parameters in network: {net.size() / 1e3:.1f}k")

Expand Down
45 changes: 34 additions & 11 deletions examples/stallion.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,10 +7,16 @@
import numpy as np
from pandas.core.common import SettingWithCopyWarning

from pytorch_forecasting import GroupNormalizer, TemporalFusionTransformer, TimeSeriesDataSet
from pytorch_forecasting import (
GroupNormalizer,
TemporalFusionTransformer,
TimeSeriesDataSet,
)
from pytorch_forecasting.data.examples import get_stallion_data
from pytorch_forecasting.metrics import QuantileLoss
from pytorch_forecasting.models.temporal_fusion_transformer.tuning import optimize_hyperparameters
from pytorch_forecasting.models.temporal_fusion_transformer.tuning import (
optimize_hyperparameters,
)

warnings.simplefilter("error", category=SettingWithCopyWarning)

Expand All @@ -22,8 +28,12 @@

data["time_idx"] = data["date"].dt.year * 12 + data["date"].dt.month
data["time_idx"] -= data["time_idx"].min()
data["avg_volume_by_sku"] = data.groupby(["time_idx", "sku"], observed=True).volume.transform("mean")
data["avg_volume_by_agency"] = data.groupby(["time_idx", "agency"], observed=True).volume.transform("mean")
data["avg_volume_by_sku"] = data.groupby(
["time_idx", "sku"], observed=True
).volume.transform("mean")
data["avg_volume_by_agency"] = data.groupby(
["time_idx", "agency"], observed=True
).volume.transform("mean")
# data = data[lambda x: (x.sku == data.iloc[0]["sku"]) & (x.agency == data.iloc[0]["agency"])]
special_days = [
"easter_day",
Expand All @@ -39,7 +49,9 @@
"beer_capital",
"music_fest",
]
data[special_days] = data[special_days].apply(lambda x: x.map({0: "", 1: x.name})).astype("category")
data[special_days] = (
data[special_days].apply(lambda x: x.map({0: "", 1: x.name})).astype("category")
)

training_cutoff = data["time_idx"].max() - 6
max_encoder_length = 36
Expand All @@ -50,14 +62,17 @@
time_idx="time_idx",
target="volume",
group_ids=["agency", "sku"],
min_encoder_length=max_encoder_length // 2, # allow encoder lengths from 0 to max_prediction_length
min_encoder_length=max_encoder_length
// 2, # allow encoder lengths from 0 to max_prediction_length
max_encoder_length=max_encoder_length,
min_prediction_length=1,
max_prediction_length=max_prediction_length,
static_categoricals=["agency", "sku"],
static_reals=["avg_population_2017", "avg_yearly_household_income_2017"],
time_varying_known_categoricals=["special_days", "month"],
variable_groups={"special_days": special_days}, # group of categorical variables can be treated as one variable
variable_groups={
"special_days": special_days
}, # group of categorical variables can be treated as one variable
time_varying_known_reals=["time_idx", "price_regular", "discount_in_percent"],
time_varying_unknown_categoricals=[],
time_varying_unknown_reals=[
Expand All @@ -78,17 +93,25 @@
)


validation = TimeSeriesDataSet.from_dataset(training, data, predict=True, stop_randomization=True)
validation = TimeSeriesDataSet.from_dataset(
training, data, predict=True, stop_randomization=True
)
batch_size = 64
train_dataloader = training.to_dataloader(train=True, batch_size=batch_size, num_workers=0)
val_dataloader = validation.to_dataloader(train=False, batch_size=batch_size, num_workers=0)
train_dataloader = training.to_dataloader(
train=True, batch_size=batch_size, num_workers=0
)
val_dataloader = validation.to_dataloader(
train=False, batch_size=batch_size, num_workers=0
)


# save datasets
training.save("t raining.pkl")
validation.save("validation.pkl")

early_stop_callback = EarlyStopping(monitor="val_loss", min_delta=1e-4, patience=10, verbose=False, mode="min")
early_stop_callback = EarlyStopping(
monitor="val_loss", min_delta=1e-4, patience=10, verbose=False, mode="min"
)
lr_logger = LearningRateMonitor()
logger = TensorBoardLogger(log_graph=True)

Expand Down
124 changes: 64 additions & 60 deletions pyproject.toml
Original file line number Diff line number Diff line change
@@ -1,63 +1,3 @@
[tool.ruff]
line-length = 120
exclude = [
"docs/build/",
"node_modules/",
".eggs/",
"versioneer.py",
"venv/",
".venv/",
".git/",
".history/",
]

[tool.ruff.lint]
select = ["E", "F", "W", "C4", "S"]
extend-ignore = [
"E203", # space before : (needed for how black formats slicing)
"E402", # module level import not at top of file
"E731", # do not assign a lambda expression, use a def
"E741", # ignore not easy to read variables like i l I etc.
"C406", # Unnecessary list literal - rewrite as a dict literal.
"C408", # Unnecessary dict call - rewrite as a literal.
"C409", # Unnecessary list passed to tuple() - rewrite as a tuple literal.
"F401", # unused imports
"S101", # use of assert
]

[tool.ruff.lint.isort]
known-first-party = ["pytorch_forecasting"]
combine-as-imports = true
force-sort-within-sections = true

[tool.black]
line-length = 120
include = '\.pyi?$'
exclude = '''
(
/(
\.eggs # exclude a few common directories in the
| \.git # root of the project
| \.hg
| \.mypy_cache
| \.tox
| \.venv
| _build
| buck-out
| build
| dist
)/
| docs/build/
| node_modules/
| venve/
| .venv/
)
'''

[tool.nbqa.mutate]
ruff = 1
black = 1

[project]
name = "pytorch-forecasting"
readme = "README.md" # Markdown files are supported
Expand Down Expand Up @@ -184,3 +124,67 @@ build-backend = "setuptools.build_meta"
requires = [
"setuptools>=70.0.0",
]

[tool.ruff]
line-length = 88
exclude = [
"docs/build/",
"node_modules/",
".eggs/",
"versioneer.py",
"venv/",
".venv/",
".git/",
".history/",
]

[tool.ruff.lint]
select = ["E", "F", "W", "C4", "S"]
extend-select = [
"I", # isort
"C4", # https://pypi.org/project/flake8-comprehensions
]
extend-ignore = [
"E203", # space before : (needed for how black formats slicing)
"E402", # module level import not at top of file
"E731", # do not assign a lambda expression, use a def
"E741", # ignore not easy to read variables like i l I etc.
"C406", # Unnecessary list literal - rewrite as a dict literal.
"C408", # Unnecessary dict call - rewrite as a literal.
"C409", # Unnecessary list passed to tuple() - rewrite as a tuple literal.
"F401", # unused imports
"S101", # use of assert
]

[tool.ruff.lint.isort]
known-first-party = ["pytorch_forecasting"]
combine-as-imports = true
force-sort-within-sections = true

[tool.black]
line-length = 88
include = '\.pyi?$'
exclude = '''
(
/(
\.eggs # exclude a few common directories in the
| \.git # root of the project
| \.hg
| \.mypy_cache
| \.tox
| \.venv
| _build
| buck-out
| build
| dist
)/
| docs/build/
| node_modules/
| venve/
| .venv/
)
'''

[tool.nbqa.mutate]
ruff = 1
black = 1
Loading
Loading