Skip to content

Commit

Permalink
DOC add example for Cramer V for column_associations (#1186)
Browse files Browse the repository at this point in the history
  • Loading branch information
reshamas authored Dec 7, 2024
1 parent 41aa4c7 commit da7dd9c
Showing 1 changed file with 55 additions and 5 deletions.
60 changes: 55 additions & 5 deletions skrub/_column_associations.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,14 +18,15 @@ def column_associations(df):
The result is returned as a dataframe with columns:
['left_column_name', 'left_column_idx', 'right_column_name',
'right_column_idx', 'cramer_v']
``['left_column_name', 'left_column_idx', 'right_column_name',
'right_column_idx', 'cramer_v']``
As the function is commutative, each pair of columns appears only once
(either col_1, col_2 or col_2, col_1 but not both). The results are sorted
(either ``col_1``, ``col_2`` or ``col_2``, ``col_1`` but not both).
The results are sorted
from most associated to least associated.
To compute the Cramer V statistic, all columns are discretized. Numeric
To compute the Cramer's V statistic, all columns are discretized. Numeric
columns are binned with 10 bins. For categorical columns, only the 10 most
frequent categories are considered. In both cases, nulls are treated as a
separate category, ie a separate row in the contingency table. Thus
Expand All @@ -41,6 +42,55 @@ def column_associations(df):
-------
dataframe
The computed associations.
Notes
-----
Cramér's V is a measure of association between two nominal variables,
giving a value between 0 and +1 (inclusive).
* `Cramer's V <https://en.wikipedia.org/wiki/Cramér%27s_V>`_
Examples
--------
>>> import numpy as np
>>> import pandas as pd
>>> import skrub
>>> pd.set_option('display.width', 200)
>>> pd.set_option('display.max_columns', 10)
>>> pd.set_option('display.precision', 4)
>>> rng = np.random.default_rng(33)
>>> df = pd.DataFrame({f"c_{i}": rng.random(size=20)*10 for i in range(5)})
>>> df["c_str"] = [f"val {i}" for i in range(df.shape[0])]
>>> df.shape
(20, 6)
>>> df.head()
c_0 c_1 c_2 c_3 c_4 c_str
0 4.4364 4.0114 6.9271 7.0970 4.8913 val 0
1 5.6849 0.7192 7.6430 4.6441 2.5116 val 1
2 9.0810 9.4011 1.9257 5.7429 6.2358 val 2
3 2.5425 2.9678 9.7801 9.9879 6.0709 val 3
4 5.8878 9.3223 5.3840 7.2006 2.1494 val 4
>>> associations = skrub.column_associations(df)
>>> associations # doctest: +SKIP
left_column_name left_column_idx right_column_name right_column_idx cramer_v
0 c_3 3 c_str 5 0.8215
1 c_1 1 c_4 4 0.8215
2 c_0 0 c_1 1 0.8215
3 c_2 2 c_str 5 0.7551
4 c_0 0 c_str 5 0.7551
5 c_0 0 c_3 3 0.7551
6 c_1 1 c_3 3 0.6837
7 c_0 0 c_4 4 0.6837
8 c_4 4 c_str 5 0.6837
9 c_3 3 c_4 4 0.6053
10 c_2 2 c_3 3 0.6053
11 c_1 1 c_str 5 0.6053
12 c_0 0 c_2 2 0.6053
13 c_2 2 c_4 4 0.5169
14 c_1 1 c_2 2 0.4122
>>> pd.reset_option('display.width')
>>> pd.reset_option('display.max_columns')
>>> pd.reset_option('display.precision')
"""
return _stack_symmetric_associations(_cramer_v_matrix(df), df)

Expand Down Expand Up @@ -173,7 +223,7 @@ def _contingency_table(encoded):


def _compute_cramer(table, n_samples):
"""Compute the Cramer V statistic given a contingency table.
"""Compute the Cramer's V statistic given a contingency table.
The input is the table computed by ``_contingency_table`` with shape
(n cols, n cols, n bins, n bins).
Expand Down

0 comments on commit da7dd9c

Please sign in to comment.