Skip to content
/ lambda Public

This repository is as a refresher for practicing widely used Machine Learning (ML) algorithms. It includes Python implementations for various ML models, ranging from basic to advanced, using diverse datasets.

Notifications You must be signed in to change notification settings

sjat02/lambda

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

25 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Machine Learning Practice

This repository serves as a refresher for practicing widely used Machine Learning (ML) algorithms. It includes Python implementations for various ML models, ranging from basic to advanced, using diverse datasets.

Introduction

This repository is designed to reinforce concepts and skills in Machine Learning by working on hands-on examples with Python. It includes code for:

  • Basic Python concepts.
  • Data preprocessing.
  • Supervised and unsupervised ML algorithms.
  • Evaluating models and tuning hyperparameters.

Prerequisites

Before running the code, ensure you have:

  • Python 3.7+
  • Libraries such as numpy, pandas, scikit-learn, matplotlib, and seaborn.

Install dependencies using:

pip install -r requirements.txt

ML Models Covered

  1. Linear Regression

    • Predicting house prices using the Boston Housing dataset.
  2. Logistic Regression

    • Classifying diabetes using the Pima Indians Diabetes dataset.
  3. Decision Trees

    • Predicting survival on the Titanic dataset.
  4. Random Forest

    • Feature importance and classification on a custom dataset.
  5. K-Nearest Neighbors (KNN)

    • Classification of the Iris dataset.
  6. Support Vector Machines (SVM)

    • Classification using a two-class synthetic dataset.
  7. K-Means Clustering

    • Customer segmentation on a retail dataset.
  8. Principal Component Analysis (PCA)

    • Dimensionality reduction on a wine quality dataset.
  9. Neural Networks (Basic)

    • Binary classification using a synthetic dataset.
  10. Gradient Boosting (XGBoost)

    • Predicting loan default on a financial dataset.

Datasets Used

  • Synthetic Datasets: Generated using sklearn.datasets for SVM and Neural Networks.

How to Use

  1. Clone this repository:
    git clone https://github.com/sjat02/lambda.git
  2. Navigate to the directory:
    cd lambda
  3. Install required libraries:
    pip install -r requirements.txt
  4. Explore the notebooks and run examples:
    jupyter notebook

Acknowledgments

About

This repository is as a refresher for practicing widely used Machine Learning (ML) algorithms. It includes Python implementations for various ML models, ranging from basic to advanced, using diverse datasets.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages