Skip to content

siyuanfeng-tri/drake-iiwa-driver

 
 

Repository files navigation

drake-iiwa-driver

This repository contains the application code used to communicate with the KUKA iiwa are from Drake. Communicating with the arm requires two pieces, a Java application to run on the KUKA Sunrise cabinet, and an local C++ application communicating with the cabinet using the FRI protocol.

The KUKA control cabinet has two network interfaces which are configured with static IP addresses. Both will need to be connected to communicate with the arm.

  • X66: 172.31.1.147/16 -- This interface is used by Sunrise Workbench to load new software onto the controller.
  • KONI: 192.170.10.2/24 -- This is the interface which FRI clients communicate over. That's not in the reserved IP space, so it could potentially cause a conflict if you happen to want to contact a host in that subnet.

Selecting the command mode to use for the arm (position vs. torque) is done by starting a different Java application on the arm (DrakeFRIPositionDriver vs. DrakeFRITorqueDriver). The C++ driver will detect which mode the FRI connection is in and send commands appropriately.

Sunrise Workbench

Provisioning the IIWA arm must be done from Sunrise Workbench.

The computer running Sunrise Workbench must be configured with an address which can communicate with 172.31.1.147/16, and which is connected to the X66 port.

TODO(sam.creasey) Can I just zip up a project/workspace?

  • File -> New -> SunriseProject

  • IP address of the controller can be left at 172.31.1.147

  • Create new project

  • Project Name: DrakeFRIDriver

  • Topology template: LBR iiwa 14 R820

  • Media Flange: Medien-Flansch Touch pneumatisch

  • Create Application

  • Source folder: whatever

  • Package: drake_fri

  • Name: DrakeFRIDriver

  • In "Package Explorer", select StationSetup.cat

  • Software (leave anything checked which already is, I think)

  • Direct Servo Motion Extension (might not be needed?)

  • Fast Robot Interface

  • Smart Servo Motion Extension

  • Save (Ctrl-S)

  • In "Package Explorer", select SafetyConfiguration.sconf

  • Customer PSM

  • Uncheck row 1 "External EMERGENCY STOP"

  • Uncheck row 2 "Operator Protection",

  • Uncheck row 3 "Safety Stop"

  • Copy the Java source code for DrakeFRIPositionDriver and DrakeFRITorqueDriver.

  • KUKA changed the spelling of the Java FRI interface as of Sunrise OS version 1.11. The appropriate sources files can be found in either kuka-driver/sunrise_1.7 or kuka-driver/sunrise_1.11 (NOTE: The sunrise_1.7 version is no longer actively tested, as I don't have any cabinets still running the older version of the software).

  • Copy DrakeFRIPositionDriver.java and DrakeFRITorqueDriver to DrakeFRIDriver/src/drake_fri (make sure Sunrise sees the update, you may need to import the files into the project). You can remove any exising DrakeFRIDriver.

  • In "Package Explorer", select StationSetup.cat

  • Installation

    • Push "Install" (this will not actually install the application, but it will wipe the existing configuration of the KUKA cabinet and replace it with yours). It will take a few minutes, and eventually will reboot the controller.
  • Press the "sync" button. It's on the toolbar at the top, 5th from the right. It looks a bit like a square with a couple of arrows over it (though it doesn't look much like this). This will install the application.

  • Execute

C++ driver

The build for the C++ driver depends on lcm and drake-lcmtypes, so it must be compiled as a component in a superbuild.

Once Sunrise Workbench is provisioned, you'll need to configure the system which will communicate directly with the KONI interface. This system must be configured for the IP address 192.170.10.200 (netmask /24, or 255.255.255.0) (this can be changed in the Java applications). KUKA recommends directly attaching the computer to the KONI port instead of using a switch. Some network interfaces (particularly some Intel models) have issues when cabled directly to the KONI port (problems include link flapping up/down repeatedly).

On the SmartPad, turn the key switch, and choose the "AUT" mode, then turn the key switch back. Choose either "DrakeFRITorqueDriver" or "DrakeFRIPositionDriver" from "Application". Press the green "Play" button on the left sidebar of the SmartPad.

Next, build the driver program to communicate with the iiwa arm using FRI, and with the controlling application using LCM. Compiling this project will output a single program in the build directory called "kuka_driver". Running it with no arguments will connect to the IIWA at it's default address and port (192.170.10.2, port 30200), negotiate LCM into the command state, and report the IIWA status via LCM.

This repository is configured with a private git submodule for the KUKA FRI source code. If you do not have access to that repository, you will need to install your own version of the FRI source:

cd kuka-fri
unzip /path/to/your/copy/of/FRI-Client-SDK_Cpp.zip
patch -p1 < ../fri_udp_connection_file_descriptor.diff

The patch above applies correctly to the FRI 1.7 and 1.11 source. Other versions have not been tested.

An application wishing to control the arm should listen to LCM for status updates and command the joints appropriately in response.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Java 52.0%
  • C++ 40.4%
  • CMake 7.6%