Python Reactor Modeling Tools (PyREMOT) is an open-source package which can be used for process simulation, optimization, and parameter estimation. The current version consists of homogeneous models for steady-state and dynamic conditions.
You can visit dashboard to build model input and load examples!
You can also run your modeling on Google Colaboratory.
1- Steady-state pseudo-homogeneous model
2- Dynamic pseudo-homogeneous model
You can install this package
pip install PyREMOT
The main method is called as:
from PyREMOT import rmtExe
# model inputs
# using dashboard to build model inputs
modelInput = {...}
# run
res = rmtExe(modelInput)
Check component list available in the current version:
from PyREMOT import rmtCom
# display component list
res = rmtCom()
print(res)
PyREMOT UI dashboard contains some panels as:
1- MODEL SELECTION
2- COMPONENTS
H2;CO2;H2O;CO;CH3OH;DME
this code is automatically converted to python as:
compList = ["H2","CO2","H2O","CO","CH3OH","DME"]
3- REACTIONS
define reactions as:
_ Add ; in the end of each line _
CO2 + 3H2 <=> CH3OH + H2O;
CO + H2O <=> H2 + CO2;
2CH3OH <=> DME + H2O
then:
reactionSet = {
"R1":"CO2+3H2<=>CH3OH+H2O",
"R2":"CO+H2O<=>H2+CO2",
"R3":"2CH3OH<=>DME+H2O"
}
In order to define reaction rate expressions, there are two code sections as
_ Add ; in the end of each line _
a) define parameters:
"CaBeDe" : CaBeDe;
"RT": x['R_CONST']*x['T'];
"K1": 35.45*math.exp(-1.7069e4/x['RT']);
"K2": 7.3976*math.exp(-2.0436e4/x['RT']);
"K3": 8.2894e4*math.exp(-5.2940e4/x['RT']);
"KH2": 0.249*math.exp(3.4394e4/x['RT']);
"KCO2": 1.02e-7*math.exp(6.74e4/x['RT']);
"KCO": 7.99e-7*math.exp(5.81e4/x['RT']);
"Ln_KP1": 4213/x['T'] - 5.752 * math.log(x['T']) - 1.707e-3*x['T'] + 2.682e-6 * (math.pow(x['T'], 2)) - 7.232e-10*(math.pow(x['T'], 3)) + 17.6;
"KP1": math.exp(x['Ln_KP1']);
"log_KP2": 2167/x['T'] - 0.5194 * math.log10(x['T']) + 1.037e-3*x['T'] - 2.331e-7 * (math.pow(x['T'], 2)) - 1.2777;
"KP2": math.pow(10, x['log_KP2']);
"Ln*KP3": 4019/x['T'] + 3.707 * math.log(x['T']) - 2.783e-3*x['T'] + 3.8e-7 * (math.pow(x['T'], 2)) - 6.56e-4/(math.pow(x['T'], 3)) - 26.64;
"KP3": math.exp(x['Ln_KP3']);
"yi*H2": x['MoFri'][0];
"yi_CO2": x['MoFri'][1];
"yi_H2O": x['MoFri'][2];
"yi_CO": x['MoFri'][3];
"yi_CH3OH": x['MoFri'][4];
"yi_DME": x['MoFri'][5];
"PH2": x['P']*(x['yi_H2'])_1e-5;
"PCO2": x['P']_(x['yi_CO2'])_1e-5;
"PH2O": x['P']_(x['yi_H2O'])_1e-5;
"PCO": x['P']_(x['yi_CO'])_1e-5;
"PCH3OH": x['P']_(x['yi_CH3OH'])_1e-5;
"PCH3OCH3": x['P']_(x['yi_DME'])*1e-5;
"ra1": x['PCO2']*x['PH2'];
"ra2": 1 + (x['KCO2']*x['PCO2']) + (x['KCO']*x['PCO']) + math.sqrt(x['KH2']_x['PH2']);
"ra3": (1/x['KP1'])_((x['PH2O']_x['PCH3OH'])/(x['PCO2']_(math.pow(x['PH2'], 3))));
"ra4": x['PH2O'] - (1/x['KP2'])*((x['PCO2']*x['PH2'])/x['PCO']);
"ra5": (math.pow(x['PCH3OH'], 2)/x['PH2O'])-(x['PCH3OCH3']/x['KP3'])
then converted:
varis0 = {
"CaBeDe" : CaBeDe,
"RT": lambda x: x['R_CONST']*x['T'],
"K1": lambda x: 35.45*math.exp(-1.7069e4/x['RT']),
"K2": lambda x: 7.3976*math.exp(-2.0436e4/x['RT']),
"K3": lambda x: 8.2894e4*math.exp(-5.2940e4/x['RT']),
"KH2": lambda x: 0.249*math.exp(3.4394e4/x['RT']),
"KCO2": lambda x: 1.02e-7*math.exp(6.74e4/x['RT']),
"KCO": lambda x: 7.99e-7*math.exp(5.81e4/x['RT']),
"Ln_KP1": lambda x: 4213/x['T'] - 5.752 * math.log(x['T']) - 1.707e-3*x['T'] + 2.682e-6 * (math.pow(x['T'], 2)) - 7.232e-10*(math.pow(x['T'], 3)) + 17.6,
"KP1": lambda x: math.exp(x['Ln_KP1']),
"log_KP2": lambda x: 2167/x['T'] - 0.5194 * math.log10(x['T']) + 1.037e-3*x['T'] - 2.331e-7 * (math.pow(x['T'], 2)) - 1.2777,
"KP2": lambda x: math.pow(10, x['log_KP2']),
"Ln_KP3": lambda x: 4019/x['T'] + 3.707 * math.log(x['T']) - 2.783e-3*x['T'] + 3.8e-7 * (math.pow(x['T'], 2)) - 6.56e-4/(math.pow(x['T'], 3)) - 26.64,
"KP3": lambda x: math.exp(x['Ln_KP3']),
"yi_H2": lambda x: x['MoFri'][0],
"yi_CO2": lambda x: x['MoFri'][1],
"yi_H2O": lambda x: x['MoFri'][2],
"yi_CO": lambda x: x['MoFri'][3],
"yi_CH3OH": lambda x: x['MoFri'][4],
"yi_DME": lambda x: x['MoFri'][5],
"PH2": lambda x: x['P']*(x['yi_H2'])*1e-5,
"PCO2": lambda x: x['P']*(x['yi_CO2'])*1e-5,
"PH2O": lambda x: x['P']*(x['yi_H2O'])*1e-5,
"PCO": lambda x: x['P']*(x['yi_CO'])*1e-5,
"PCH3OH": lambda x: x['P']*(x['yi_CH3OH'])*1e-5,
"PCH3OCH3": lambda x: x['P']*(x['yi_DME'])*1e-5,
"ra1": lambda x: x['PCO2']*x['PH2'],
"ra2": lambda x: 1 + (x['KCO2']*x['PCO2']) + (x['KCO']*x['PCO']) + math.sqrt(x['KH2']*x['PH2']),
"ra3": lambda x: (1/x['KP1'])*((x['PH2O']*x['PCH3OH'])/(x['PCO2']*(math.pow(x['PH2'], 3)))),
"ra4": lambda x: x['PH2O'] - (1/x['KP2'])*((x['PCO2']*x['PH2'])/x['PCO']),
"ra5": lambda x: (math.pow(x['PCH3OH'], 2)/x['PH2O'])-(x['PCH3OCH3']/x['KP3'])
}
b) define the final form of reaction rate expressions:
"r1": 1000*x['K1']*(x['ra1']/(math.pow(x['ra2'], 3)))*(1-x['ra3'])*x['CaBeDe'];
"r2": 1000*x['K2']*(1/x['ra2'])*x['ra4']*x['CaBeDe'];
"r3": 1000*x['K3']*x['ra5']*x['CaBeDe']
then converted:
rates0 = {
"r1": lambda x: 1000*x['K1']*(x['ra1']/(math.pow(x['ra2'], 3)))*(1-x['ra3'])*x['CaBeDe'],
"r2": lambda x: 1000*x['K2']*(1/x['ra2'])*x['ra4']*x['CaBeDe'],
"r3": lambda x: 1000*x['K3']*x['ra5']*x['CaBeDe']
}
4- PROPERTIES
feed properties:
# species-concentration [mol/m^3]
SpCoi = [574.8978, 287.4489, 1.15e-02, 287.4489, 1.15e-02, 1.15e-02]
# flowrate @ P & T [m^3/s]
VoFlRa = 0.000228
# pressure [Pa]
P = 5000000
# temperature [K]
T = 523
# process-type [-]
PrTy = "non-iso-thermal"
5- REACTOR
reactor and catalyst characteristics:
# reactor-length [m]
ReLe = 1
# reactor-inner-diameter [m]
ReInDi = 0.0381
# bed-void-fraction [-]
BeVoFr = 0.39
# catalyst bed density [kg/m^3]
CaBeDe = 1171.2
# particle-diameter [m]
PaDi = 0.002
# particle-density [kg/m^3]
CaDe = 1920
# particle-specific-heat-capacity [J/kg.K]
CaSpHeCa = 960
6- HEAT-EXCHANGER
# overall-heat-transfer-coefficient [J/m^2.s.K]
U = 50
# medium-temperature [K]
Tm = 523
7- SOLVER
# ode-solver [-]
ivp = "default"
# display-result [-]
diRe = "True"
After setting all modules, you can find 'model input' in python format in the summary panel. Then, copy the content of this file in your python framework and run it!
You can also find an example on PyREMOT dashboard, load it and then have a look at the summary panel.
As the downloaded python file contains modelInput variable, you can directly run the model as:
# model input
modelInput = {...}
# start modeling
res = rmtExe(modelInput)
For steady-state cases, the modeling result is stored in an array named dataPack:
# res
dataPack = []
dataPack.append({
"modelId": modelId,
"processType": processType,
"successStatus": successStatus,
"computation-time": elapsed,
"dataShape": dataShape,
"labelList": labelList,
"indexList": indexList,
"dataTime": [],
"dataXs": dataXs,
"dataYCons1": dataYs_Concentration_DiLeVa,
"dataYCons2": dataYs_Concentration_ReVa,
"dataYTemp1": dataYs_Temperature_DiLeVa,
"dataYTemp2": dataYs_Temperature_ReVa,
"dataYs": dataYs_All
})
And for dynamic cases,
# res
resPack = {
"computation-time": elapsed,
"dataPack": dataPack
}
Concentration results:
dataYCons1: dimensionless concentration
dataYCons2: concentration [mol/m^3.s]
Temperature results:
dataYTemp1: dimensionless temperature
dataYTemp2: Temperature [K]
All modeling results is also saved in dataYs.
For any question, you can contact me on LinkedIn or Twitter.