0.10
The two major features in this release are the llm chat command and support for embedding binary data.
llm chat
The new llm chat
command starts an ongoing chat conversation with a model in your terminal. It works with all models supported by LLM and its plugins, including locally installed models such as Llama 2. #231
This offers a big performance boost for local models, since they don't need to be freshly loaded into memory for each prompt.
Here's an example chat with Llama 2 13B, provided by the llm-mlc plugin.
llm chat -m mlc-chat-Llama-2-13b-chat-hf-q4f16_1
This starts a chat session:
Type 'exit' or 'quit' to exit
Type '!multi' to enter multiple lines, then '!end' to finish
> Who are you?
Hello! I'm just an AI, here to assist you with any questions you may have.
My name is LLaMA, and I'm a large language model trained to provide helpful
and informative responses to a wide range of questions and topics. I'm here
to help you find the information you need, while ensuring a safe and
respectful conversation. Please feel free to ask me anything, and I'll do my
best to provide a helpful and accurate response.
> Tell me a joke about otters
Sure, here's a joke about otters:
Why did the otter go to the party?
Because he heard it was a "whale" of a time!
(Get it? Whale, like a big sea mammal, but also a "wild" or "fun" time.
Otters are known for their playful and social nature, so it's a lighthearted
and silly joke.)
I hope that brought a smile to your face! Do you have any other questions or
topics you'd like to discuss?
> exit
Chat sessions are logged to SQLite - use llm logs
to view them. They can accept system prompts, templates and model options - consult the chat documentation for details.
Binary embedding support
LLM's embeddings feature has been expanded to provide support for embedding binary data, in addition to text. #254
This enables models like CLIP, supported by the new llm-clip plugin.
CLIP is a multi-modal embedding model which can embed images and text into the same vector space. This means you can use it to create an embedding index of photos, and then search for the embedding vector for "a happy dog" and get back images that are semantically closest to that string.
To create embeddings for every JPEG in a directory stored in a photos
collection, run:
llm install llm-clip
llm embed-multi photos --files photos/ '*.jpg' --binary -m clip
Now you can search for photos of racoons using:
llm similar photos -c 'raccoon'
This spits out a list of images, ranked by how similar they are to the string "raccoon":
{"id": "IMG_4801.jpeg", "score": 0.28125139257127457, "content": null, "metadata": null}
{"id": "IMG_4656.jpeg", "score": 0.26626441704164294, "content": null, "metadata": null}
{"id": "IMG_2944.jpeg", "score": 0.2647445926996852, "content": null, "metadata": null}
...
Also in this release
- The LLM_LOAD_PLUGINS environment variable can be used to control which plugins are loaded when
llm
starts running. #256 - The
llm plugins --all
option includes builtin plugins in the list of plugins. #259 - The
llm embed-db
family of commands has been renamed tollm collections
. #229 llm embed-multi --files
now has an--encoding
option and defaults to falling back tolatin-1
if a file cannot be processed asutf-8
. #225